Non-invasive brain stimulation and the autonomic nervous system

Pedro Schestatskya,b,c, Marcel Simisc,d, Roy Freemane, Alvaro Pascual-Leonef, Felipe Fregnic,f,*

aPrograma de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul, Brasil
bDepartament of Internal Medicine, Universidade Federal do Rio Grande do Sul, Brazil
cLaboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
dDivision of Neurology, Santa casa de São Paulo Medical School, SP, Brazil
eAutonomic and Peripheral Nerve Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, USA
fBerenson-Allen Center for Noninvasive Brain Stimulation, Behavioral Neurology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

\textbf{abstract}

Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive methods of brain stimulation (NIBS) that can induce significant effects on cortical and subcortical neural networks. Both methods are relatively safe if appropriate guidelines are followed, and both can exert neuromodulatory effects that may be applied to the investigation of the autonomic nervous system (ANS). In addition, ANS measures can shed important light onto the neurobiologic mechanisms of NIBS. Here we present a systematic review on studies testing NIBS and ANS simultaneously. We structure our findings into four broad (not mutually exclusive) categories: (i) studies in which ANS function was modified by NIBS versus those in which it was not; (ii) studies in which NIBS was used to understand ANS function, (iii) studies in which ANS was used to understand NIBS mechanisms and (iv) NIBS/ANS studies conducted in healthy subjects versus those in patients with neuropsychiatric diseases. Forty-four articles were identified and no conclusive evidence of the effects of NIBS on ANS was observed, mainly because of the heterogeneity of included studies. Based on a comprehensive summary of this literature we propose how NIBS might be further developed to enhance our understanding of the cortical mechanisms of autonomic regulation and perhaps to modulate autonomic activity for therapeutic purposes.

© 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
P. Schestatsky et al. / Clinical Neurophysiology xxx (2013) xxx–xxx

1. Introduction

In recent years, techniques for non-invasive brain stimulation (NIBS) have become increasingly used in fundamental and clinical neuroscience. Here we focus on two techniques: repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), which have been studied most intensively (Fregni and Pascual-Leone, 2007). Both methods have provided relevant information about cortical excitability in healthy subjects as well as relevant advances in the treatment of several clinical conditions (Fregni and Pascual-Leone, 2007). Despite the increased use of these techniques, their mechanisms of action remain poorly understood. In addition, the relative impact of rTMS and tDCS on different parts of the nervous system has received limited attention. Here we concentrate specifically on the effects of rTMS and tDCCS on the autonomic nervous system (ANS) and on the use of ANS to understand the mechanisms of rTMS and tDCCS.

NIBS is a useful technique to understand cortical control of ANS. Previous studies have demonstrated that modulation of motor cortex results in significant changes in muscle sympathetic nerve activity (Macefield et al., 1998; Silber et al., 2000). In addition, the ANS has been increasingly used as an outcome measure in NIBS studies in order to understand the broad effects of these techniques including their safety profile. However, while there is clear evidence of autonomic effects of brain stimulation on animals (Yasui et al., 1991; Sequera et al., 1995; Tavares et al., 2004), recent articles found conflicting results on the relationship of NIBS and ANS (Lai et al., 2010; Näsä et al., 2011; Vandermeeren et al., 2010; Brunoni et al., 2013). Therefore, it is important to consider the two-way relationship between central modulation and ANS function that can be used to explore both NIBS mechanisms and ANS function.

In his context, given the mixed results of studies of NIBS combined with ANS measures and lack of pivotal studies in this area, we performed a systematic review to assess the relationship between non-invasive cortical stimulation and ANS using the following framework: (i) studies separated by those in which ANS function was changed by NIBS versus those in which it was not; (ii) studies in which NIBS was used to understand ANS function; (iii) studies in which ANS was used to understand NIBS mechanisms and (iv) NIBS/ANS studies conducted in healthy subjects versus patients with neuropsychiatric diseases.

Finally, because there are no guidelines for establishing parameters to induce and quantify cortical autonomic plasticity using NIBS, we also explored these issues in the present review.

2. Methods

2.1. Literature search

For TMS, we searched for articles published from 1985, when the first study of TMS was released using current TMS parameters (Barker et al., 1985). For tDCCS, we searched for studies published from 1998, when modern stimulation protocols were adopted (Priori et al., 1998). We explored articles in the following databases: Medline, Scopus, Web of Science and Google Scholar. Fig. 1 shows the search strategy and the results after careful inclusion and exclusion processes. The autonomic variables were chosen after a systematic review of autonomic tests in the current literature (Ravits, 1997; Low, 2003; Freeman, 2005; Hilz and Dütsch, 2006).

2.2. Literature selection: inclusion and exclusion criteria

We included (1) all original articles that reported TMS and tDCCS effects in humans and (2) articles written in English. We therefore excluded the following articles: (1) animal studies; (2) case reports; (3) letters; (4) editorials; (5) articles reporting duplicate data; (6) review articles and, finally (7) articles addressing the effects of non-invasive stimulation applied to other parts of nervous system apart from the brain.

2.3. Data extraction

After careful review of articles, the authors defined the most relevant variables to be extracted from the articles (see below). Then, for each study, two authors extracted data independently (P.S. and O.P.) and two other authors (M.S. and F.F.) checked data extraction. Any discrepancies were resolved by consensus with the corresponding author (F.F.) if necessary.

We elaborated a structured checklist in order to extract the following variables:

(i) Demographic and clinical characteristics: Total number of subjects, gender (absolute number of males and females), age (years) and clinical condition (healthy versus non-healthy subjects);

(ii) Study characteristics: Year of publication, presence of control group, level of blinding (open, single- or double-blinded) and study design (parallel, crossover or case series designs); In order to assess the quality of reports of the clinical trials we used Jadad scores (Jadad et al., 1996), spanning from 0 to 5 points according to presence of randomization (0 to 2 points), blinding (0 to 2 points), withdrawals report (1 point).

(iii) Stimulation characteristics: For TMS we noted the presence and type of sham, site of stimulation in the scalp (M1, DLPFC and others), intensity (% of motor threshold), number of pulses before the autonomic measurements, shape of the coil (circular versus figure-of-eight), type of stimulation (single versus repetitive) and frequency of stimulation (if repetitive). For tDCCS, we also included stimulation montage and polarity, dose of electric current, duration of session (min), current intensity (mA), size of electrodes (cm²), and
current density (mA/cm²). Tables 1–6 display the most relevant parameters addressed for each NIBS technique. For both NIBS techniques (TMS and tDCS) we noted the number of sessions preceding the autonomic recordings;

(iv) Autonomic function measurement characteristics: Positive versus negative ANS findings (we classified studies as “ANS+” and “ANS−”); classification of ANS outcome (whether autonomic variables were the main or secondary outcome of the study); and main study goals (whether the main objective was to understand the function of ANS using NIBS as a tool or if the study was designed to understand NIBS mechanisms of safety using ANS parameters. Finally, the type of autonomic variables, the timeframe for measurement of the autonomic parameters with respect to brain stimulation and the presence of absence of provocative maneuvers to elicit autonomic responses were assessed.

2.4. Data analysis

All analyses were performed using Statistical Package for the Social Sciences, version 16.0 (USA). For the first category of our framework hypothesis we performed an exploratory analysis in which we ran initially univariate logistic regression models considering the outcome (yes/no) for the autonomic variables as the dependent binary variable and selected independent variables. Subsequently, we ran a multivariate logistic regression model including independent variables chosen according to clinical importance and also according to our univariate analysis (reported in Tables 5 and 6). The goal of this model was to assess significant predictors of ANS findings in NIBS studies. A value of $p < 0.05$ was used to define statistical significance. For the second, third and fourth categories of our framework, due to the data heterogeneity and small sample sizes, most of the results were reported in a descriptive manner.

3. Results

Our initial search strategy yielded 8136 articles on TMS and 658 articles on tDCS. We then cross-referenced these with each of the selected ANS tests (Fig. 1). With this strategy of combining NIBS with those autonomic tests, we reduced the references to 390 and 39 entries for TMS and tDCS, respectively. After applying the exclusion criteria, 34 studies on TMS and 13 studies on tDCS were retrieved for full-text assessment. In this step, a further 3 TMS studies were excluded, two because of duplicated data and one because it was a letter with no original data in it. Therefore, 31 articles on TMS and 13 articles on tDCS were included, resulting in a total of 44 articles for detailed analyses. The quality of studies measured by Jadad scores was 0.5 ± 0.5 for TMS and 0.8 ± 0.4 for tDCS ($p = 0.06$).

3.1. Overall effects of NIBS on the ANS

As above mentioned, 31 TMS articles were identified, enrolling 350 healthy subjects and 173 patients, totaling 523 subjects. Fifteen articles (48.4%) showed an association between TMS and
ANS (Group TMS ANS+ articles), whereas sixteen articles (51.6%) did not find this association (Group TMS ANS− articles). Regarding tDCS, 13 studies were identified, comprising of 342 healthy subjects and only 10 patients, totaling 352 subjects. Six studies (46.2%) found a significant association between tDCS and ANS alterations (Group TMS ANS+). Tables 1–4 show the individual characteristics of TMS and tDCS studies, respectively, according to its effects on ANS.

We report the results from this review according to our proposed framework.

3.2. Framework – category I: studies separated by those in which the ANS function was changed by NIBS versus those in which it was not

There were no significant demographic or clinical predictors for ANS alterations associated with NIBS. Regarding stimulation characteristics, univariate analysis showed that the only significant predictors of ANS alterations were the type of TMS stimulation (single-pulse TMS) and the number of tDCS sessions (Group tDCS ANS+). Tables 1–4 show the individual characteristics of TMS and tDCS studies, respectively, according to its effects on ANS.

We report the results from this review according to our proposed framework.

3.2. Framework – category I: studies separated by those in which the ANS function was changed by NIBS versus those in which it was not

There were no significant demographic or clinical predictors for ANS alterations associated with NIBS. Regarding stimulation characteristics, univariate analysis showed that the only significant predictors of ANS alterations were the type of TMS stimulation (single-pulse TMS) and the number of tDCS sessions. Single-pulse TMS – probably because of its transitory effect over autonomic function – and a high number of tDCS sessions – because of the cumulative effect over the habituated and therefore less pronounced autonomic responses induced by rTMS. No other significant findings were observed for the other stimulation parameters for either TMS or tDCS. In most of the NIBS studies that showed ANS alterations, either the M1 or DLPFC were used as the target for NIBS. However, other stimulation areas were also associated with ANS alterations induced by NIBS, such as parietal (Silber et al., 2000; van Honk et al., 2003; Lai et al., 2010), occipital (Silber et al., 2000; Vernieri et al., 2009), frontal (Silber et al., 2000) and vertex (Macefield et al., 1998; Yoshida et al., 2001) regions for TMS studies, and temporal region (Montenegro et al., 2011) for tDCS studies.

The number of studies that aimed to analyze ANS changes as a primary outcome was higher in ANS+ group in comparison with ANS− group for either NIBS methods (80% versus 30% for TMS and 66% versus 20% for tDCS studies; p = 0.01). The most commonly autonomic tests used for either NIBS technique (Figs. 2 and 3) were the absolute heart rate (HR), blood pressure evaluation (BP) and heart rate variability (HRV), followed by the functional sweating tests.

The provocative maneuvers in which ANS alterations were detected were respiratory movements (Filippi et al., 2000; Locher et al., 2006) and the use of figures with angry facial expressions (van Honk et al., 2002). The side of scalp stimulation (right versus left) was not a significant predictor for either TMS or tDCS studies. Tables 5 and 6 show the study characteristics according to the NIBS effects on the ANS.

Multivariate analysis showed that none of these variables remain significant when adjusted to the other covariates, suggesting that potential significant findings from univariate analysis may be a result of confounding factors – i.e., the association between single-pulse TMS and significant fluctuations in ANS may be due to other factors in studies with single-pulse TMS.

3.3. Framework – category II: studies in which NIBS was used to understand ANS function

In this category, NIBS was used to understand the impact of cortical modulation on the ANS function and therefore provide

insight into the cortical–subcortical ANS relationship. Seven (out of 31) TMS articles aimed to study ANS function by using TMS (Table 1). No articles using tDCS to study the ANS function were found in this review. All the aforementioned TMS studies enrolled healthy subjects (119) with a mean age of 29.8 ± 3.8 years old. The most common type of study design was an open-label, cross-over trial. Regarding stimulation parameters, although repetitive TMS (rTMS) was more frequently used (57.1%), 3 articles used single-pulse TMS to disrupt cortical function and measure ANS effects. The most commonly used target was the left M1. The mean intensity was 110% with 90 pulses and 3 sessions on average. There were no preferences of coil type and, in only 57.1% of cases sham stimulation was included using a sham coil (Niehaus et al., 1998; Such et al., 2000). Contrary to the articles from Framework – Category II, in which no studies with patients were found, 62.5% of TMS articles that aimed to study NIBS mechanism enrolled subjects with a variety of clinical conditions (See also Section 3.5 for further information on study of patients). The mean age of all subjects (healthy and patients) was 35.28 ± 8.34 years old. The study designs were similar to those used shown in Framework – Category II. The quality of studies indexed by Jadad scores was slightly higher in comparison with those from TMS studies designed to assess ANS function (Jadad scores of 1.0 ± 0.8 versus 0.7 ± 0.9; p = 0.2). Unlike the Framework – Category II, when ANS was used to study NIBS mechanisms, repetitive TMS was more frequently used (the average number of pulses per session was 1011). Single-pulse TMS was used in only 16.7% of the studies. The most commonly used autonomic tests were also similar, but other outcomes were also measured. Positive effects of TMS over the ANS were seen in 42.9% of the articles and, among all autonomic tests, HRV was the only one with significant association with autonomic changes ($\chi^2 = 6.359$; p = 0.018). From this analysis, it was clear that most of the studies aimed to map cortical areas associated with ANS modulation, therefore the use of open-label studies, healthy subjects and single-pulse TMS design was appropriate.

3.4. Framework – category III: studies in which ANS was used to understand NIBS mechanisms

In this category, ANS measurements were used to understand the broad behavioral effects of NIBS including safety of NIBS. Twenty-four out of 31 TMS articles (77.4%) and 13 out of 13 tDCS articles (100%) aimed to investigate NIBS mechanisms and safety using autonomic assessments. Ten articles (8 TMS, 2 tDCS) were found that investigated NIBS safety.

3.4.1. TMS studies (framework – category III)

In this category, 16 articles used TMS. These studies had high Jadad scores (1.6 ± 0.7) and explored a variety of stimulation protocols. All the studies had patients (healthy and patients) enrolling in the studies with a mean age of 31.4 ± 15.4 years old. The most commonly used target was the left M1. The mean intensity was 110% with 90 pulses and 3 sessions on average. There were no preferences of coil type and, in only 57.1% of cases sham stimulation was included using a sham coil (Niehaus et al., 1998; Such et al., 2000). Contrary to the articles from Framework – Category II, in which no studies with patients were found, 62.5% of TMS articles that aimed to study NIBS mechanism enrolled subjects with a variety of clinical conditions (See also Section 3.5 for further information on study of patients). The mean age of all subjects (healthy and patients) was 35.28 ± 8.34 years old. The study designs were similar to those used shown in Framework – Category II. The quality of studies indexed by Jadad scores was slightly higher in comparison with those from TMS studies designed to assess ANS function (Jadad scores of 1.0 ± 0.8 versus 0.7 ± 0.9; p = 0.2). Unlike the Framework – Category II, when ANS was used to study NIBS mechanisms, repetitive TMS was more frequently used (the average number of pulses per session was 1011). Single-pulse TMS was used in only 16.7% of the studies. The most commonly used autonomic tests were also similar, but other outcomes were also measured. Positive effects of TMS over the ANS were seen in 42.9% of the articles and, among all autonomic tests, HRV was the only one with significant association with autonomic changes ($\chi^2 = 6.359$; p = 0.018). From this analysis, it was clear that most of the studies aimed to map cortical areas associated with ANS modulation, therefore the use of open-label studies, healthy subjects and single-pulse TMS design was appropriate.

Table 2

Individual characteristics of TMS studies showing no ANS alterations.

<table>
<thead>
<tr>
<th>Author</th>
<th>N, status</th>
<th>What to study?</th>
<th>Frequency</th>
<th>Sham Design</th>
<th>Blinding</th>
<th>Site of stimulation (side)</th>
<th>Intensity %MT</th>
<th>Pulses (total)</th>
<th>Sessions</th>
<th>Autonomic tests</th>
<th>Provocative maneuvers</th>
<th>Auto mechanic recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascual-Leone et al. (1993)</td>
<td>9, healthy</td>
<td>NIBS</td>
<td>1 to 15</td>
<td>No</td>
<td>Cross-over</td>
<td>Open</td>
<td>M1 (R/L)</td>
<td>167.5</td>
<td>2353</td>
<td>1</td>
<td>HR, BP</td>
<td>None</td>
</tr>
<tr>
<td>Jahnshahi et al. (1997)</td>
<td>6, healthy</td>
<td>NIBS</td>
<td>25</td>
<td>No</td>
<td>Cross-over</td>
<td>Open</td>
<td>M1 (L)</td>
<td>110</td>
<td>200</td>
<td>1</td>
<td>HR, BP</td>
<td>None</td>
</tr>
<tr>
<td>Foerster et al. (1997)</td>
<td>13, healthy</td>
<td>NIBS</td>
<td>20</td>
<td>Yes</td>
<td>Cross-over</td>
<td>Single</td>
<td>M1 (R/L, Fz)</td>
<td>120</td>
<td>10</td>
<td>1</td>
<td>HR, BP</td>
<td>None</td>
</tr>
<tr>
<td>Niehaus et al. (1998)</td>
<td>30, healthy</td>
<td>ANS</td>
<td>10</td>
<td>Yes</td>
<td>Cross-over</td>
<td>Open</td>
<td>M1 (7)</td>
<td>130</td>
<td>42</td>
<td>1</td>
<td>SSR</td>
<td>None</td>
</tr>
<tr>
<td>Strafella et al. (2001)</td>
<td>18, healthy</td>
<td>NIBS</td>
<td>10</td>
<td>No</td>
<td>Parallel</td>
<td>Single</td>
<td>DLPPC, occipital (L)</td>
<td>100</td>
<td>450</td>
<td>1</td>
<td>BT, EDA, RR</td>
<td>No</td>
</tr>
<tr>
<td>Clark et al. (2000)</td>
<td>20, healthy</td>
<td>ANS</td>
<td>10</td>
<td>Yes</td>
<td>Cross-over</td>
<td>Single</td>
<td>M1 (L)</td>
<td>110</td>
<td>150</td>
<td>1</td>
<td>HR, BP, CBF</td>
<td>None</td>
</tr>
<tr>
<td>Niehaus and Guldin (2001)</td>
<td>22, healthy</td>
<td>ANS</td>
<td>10 and 20</td>
<td>Yes</td>
<td>Cross-over</td>
<td>Open</td>
<td>Frontal, parieto-occipital (ND) Vertex</td>
<td>130</td>
<td>56</td>
<td>1</td>
<td>PSIZ</td>
<td>None</td>
</tr>
<tr>
<td>Locher et al. (2006)</td>
<td>6, healthy</td>
<td>NIBS</td>
<td>Single</td>
<td>No</td>
<td>Case series</td>
<td>Open</td>
<td>M1 (L)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>RR, Respiratory movements</td>
<td>Concomitant</td>
</tr>
<tr>
<td>Zwansgerz et al. (2007)</td>
<td>11, healthy</td>
<td>NIBS</td>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>Single</td>
<td>DLPPC (R)</td>
<td>120</td>
<td>1800</td>
<td>1</td>
<td>HR</td>
<td>None</td>
</tr>
<tr>
<td>Such et al. (2007)</td>
<td>10, healthy</td>
<td>NIBS</td>
<td>10</td>
<td>No</td>
<td>Case series</td>
<td>Open</td>
<td>Double</td>
<td>DLPPC, occipital (L)</td>
<td>90</td>
<td>450</td>
<td>3</td>
<td>HR, RR, BT, CAT</td>
</tr>
<tr>
<td>Osuch et al. (2009)</td>
<td>9, PTSD</td>
<td>NIBS</td>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>Double</td>
<td>DLPPC (R)</td>
<td>100</td>
<td>36000</td>
<td>20</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Van den Eynde et al. (2011)</td>
<td>38, bulimia</td>
<td>NIBS</td>
<td>10</td>
<td>Yes</td>
<td>Single</td>
<td>Case series</td>
<td>M1 (L)</td>
<td>110</td>
<td>ND</td>
<td>1</td>
<td>HR, BP</td>
<td>None</td>
</tr>
<tr>
<td>Nakatani-Enomoto et al. (2011)</td>
<td>8, SCI</td>
<td>NIBS</td>
<td>Single</td>
<td>No</td>
<td>Parallel</td>
<td>Single</td>
<td>M1 (ND)</td>
<td>80</td>
<td>900</td>
<td>5</td>
<td>HR, BP, SSR</td>
<td>None</td>
</tr>
<tr>
<td>Kuppuswamy et al. (2011)</td>
<td>23</td>
<td>NIBS</td>
<td>0.5, 1 and 2</td>
<td>No</td>
<td>Parallel</td>
<td>Open</td>
<td>M1 (L)</td>
<td>75</td>
<td>800</td>
<td>8</td>
<td>HR, BP</td>
<td>None</td>
</tr>
</tbody>
</table>

NA = not applicable; ND = not described; HR = Heart rate; BP = Blood pressure; HRV = Heart rate variability; SCL = Skin conductance level; SSR = Sympathetic skin response; RR = Respiratory rate; CVR = Cerebral vasomotor reactivity; BT = Body temperature; MICR = Microneurography; CAT = Catecholamines; PSIZ = Pupillary size.
amine levels measurements. In only 12.5% of the studies, the autonomic measurement was done simultaneously with TMS stimulation and in 45.8% of cases the autonomic tests were performed 1 min after the stimulation. In some cases, autonomic assessments were completed after hours (Vernieri et al., 2009), days (Yozbatiran et al., 2009; Kuppuswamy et al., 2011) or even weeks (Yukimasa et al., 2006; Udupa et al., 2007) after TMS.

3.4.2. tDCS studies (framework – category III)

From the initially selected tDCS studies (13 articles), all of them aimed to analyze NIBS mechanisms and safety using autonomic functional tests. Among those, 46.2% found positive effects of tDCS on autonomic assessments. Most of the studies were done in healthy subjects with a mean age of 28.7 ± 8.7 years old and Jadad score of 1.5 ± 1.5. In 6 of them, the classic M1 or DLPFC anodal montages were used, but in the other 7 articles, less common stimulation sites were observed, such as occipital (Accornero et al., 2007), superior temporal (Flöel et al., 2008), inferior frontal (de Vries et al., 2010) and temporal (Montenegro et al., 2011) areas in which only the later significantly altered the ANS after stimulation. As expected, due to the intrinsic characteristics of tDCS, most of these studies used sham stimulation (76.9%) and measured autonomic function 1 min away from stimulation. Most of the positive ANS effects were attributed to anodal stimulation, but in two articles, cathodal stimulation induced significant autonomic modifications in both DLPFC (Beeli et al., 2008) and M1 (Vernieri et al., 2010) spots. The most frequently used autonomic tests can be seen in Table 4, in which provocative maneuvers were performed in only 38.5% of cases.

In summary, in contrast to Framework – Category II, in this category, most of the studies included the use of protocols aimed at inducing long-lasting neuroplasticity with tDCS and rTMS. Furthermore, this category showed more studies in patients as well as more follow-up assessments.

3.5. Framework – category IV: NIBS/ANS studies conducted in healthy subjects versus patients with neuropsychiatric diseases

Only 10 out of 44 articles assessed the association between NIBS and ANS in patients (9 TMS, 1 tDCS). The clinical conditions varied. In TMS studies, disorders such as migraine, depression, stroke,
schizophrenia, posttraumatic stress disorder, bulimia and spinal cord injury were tested. In tDCS studies only patients with depression and HIV were evaluated. The mean age of the patients was 41.9 ± 7.2 years old. In most of TMS studies dealing with patients, an open-label and parallel design studies was assessed. The quality of studies was generally poor, according to Jadad scores (1.2 ± 1.0).

Regarding stimulation protocols, most of the articles used rTMS with an average of 1048 pulses/session and 8 sessions applied over the left M1 or DLPFC. Most of the autonomic assessments were done after 1 min of stimulation, with no previous autonomic provocative maneuvers. Similarly, heart rate variability using power spectrum was the most used tool to assess NIBS mechanisms. A positive effect of NIBS over the ANS was found in 66.7% of the studies. The most used tool to assess NIBS mechanisms was heart rate variability using power spectrum. A provocative maneuvers. Similarly, heart rate variability using power spectrum was the most used tool to assess NIBS mechanisms. A positive effect of NIBS over the ANS was found in 66.7% of the studies with patients.

4. Discussion

Our findings can be summarized in seven main points: (1) half of the NIBS studies failed to show significant changes in ANS outcomes; (2) there are no significant predictors of NIBS-induced ANS changes when adjusting for multiple variables; (3) there is a lack of studies assessing ANS effects in neurological disorders and lack of studies using provocative maneuvers to study both NIBS mechanisms and ANS function; (4) there is no consensus on the best parameters of stimulation necessary to induce significant modifications in autonomic function; (5) parameters of stimulation and study design seem to differ in studies assessing NIBS mechanisms with ANS parameters versus studies assessing the ANS function with NIBS; (6) autonomic tests used have a different sensitivity to ANS changes and only the HRV showed a significant association with autonomic fluctuations; and (7) most of the clinical studies have low Jadad scores, therefore indicating that studies have several limitations in the report and/or methodology.

From approximately 9000 NIBS (TMS/tDCS) articles in the available literature, we found only 44 studies analyzing NIBS effects on the ANS and approximately half of these studies showed a significant association between NIBS and changes in the autonomic tests. This was considered an unexpected finding given the strong body of evidence on cortical modulation of sympathetic and parasympathetic responses in animals. For instance, in the prefrontal cortex, two regions have well-defined autonomic control: the medial (mPFC) and lateral prefrontal cortex (Tavares et al., 2004). Also, electrical stimulation applied to motor and premotor areas in the rat, cat and monkeys can also elicit well-defined cardio-autonomic responses (Sequeira et al., 1995). Finally, Yasui et al. (1991) found that stimulation of different regions of the insular cortex triggers cardiovascular responses consistently.

One of the main reasons to explain why only half of the reviewed studies did not show ANS changes in response to NIBS is the poor specificity and penetration of brain stimulation induced currents over the specific brain regions. For instance, Yasui et al. (1991) found that stimulation of different regions of the insular cortex could raise different cardiovascular responses in the same subject: stimulating the anterior commissure with microelectrodes, increased HR and sustained BP were obtained, whereas the stimulation of posterior insular cortex leads to decreased HR and BP together. These findings illustrate well the technical difficulty of studies assessing ANS parameters versus studies assessing the ANS function with NIBS.
that single-pulse TMS is not able to induce autonomic plasticity. More likely to report ANS changes. One interesting aspect here is be briefly discussed. We found that single-pulse TMS studies are...interesting findings are interesting to...variable across studies, and therefore, the power for the adjusted analysis was limited. We found relatively less tDCS studies as compared to TMS studies...one study on tDCS for depression using repeated sessions...induce prolonged behavioral effects (Shekhawat et al., 2013). Other...reduced the size of stimulation electrode/increasing the size of...in performing NIBS in humans, in which the electrical current...current induced into the cortex reaches only few centimeters in depth...an adjacent cortical areas may have a contrary effect. Theoretically, TMS is a more adequate tool to investigate ANS function because of its focality over cortical autonomic areas. One strategy that might help to focus the stimulation to a specific target is the use of neuronavigation to better localize the area to be stimulated by TMS (Bashir et al., 2011) or, in case of tDCS, the use of a...due to direct autonomic activation – is more likely. There-fore, measuring the levels of anxiety and arousal in studies addressing ANS is of paramount importance for future investigations.

Due to the lack of sham stimulation in most of these studies (Table 1), the authors from these studies were unable to exclude the role of arousal provoked by the stimuli, rather than a direct stimulation of autonomic pathway. One option to disentangle these effects is to separate autonomic changes secondary to arousal versus activation of autonomic centers is the use of scales to assess unpleasantness of the stimulation using a simple visual analogue scale such as Foerster et al. (1997) performed. Another way is to apply the State-Trait Anxiety Inventory (Rasin and Nelson, 1983) scale. If strong correlations between these scores and autonomic responses are found, vegetative changes due to arousal effect – and not due to direct autonomic activation – is more likely. Therefore, measuring the levels of anxiety and arousal in studies addressing ANS is of paramount importance for future investigations.

We found relatively less tDCS studies as compared to TMS studies using ANS measurements. Most of the tDCS studies were in healthy subjects and employed a single session of tDCS. One finding that needs to be further investigated is the impact of number of sessions. One study on tDCS for depression using repeated sessions showed significant effects on heart rate and blood pressure (Knotkova et al., 2012). It has been shown that repeated sessions of tDCS induce prolonged behavioral effects (Shekhawat et al., 2013). Other tDCS parameters that are also important to be considered are mean current density, duration of stimulation and electrodes montage. In fact, it is known already that larger current densities may induce effects on deeper cortical structures (DaSilva et al., 2012). Therefore, the use of increased current density – by using smaller and...
more focal stimulation electrodes (Nitsche et al., 2007) – may be beneficial in future studies addressing the effects of tDCS over the ANS.

According to the studies with positive effects of NIBS on ANS, the M1 and DLPFC were the most used areas for triggering autonomic responses. Indeed, according to some authors, there is a strong correlation between the sympathetic activity and M1 (Schlindwein et al., 2008) and DLPFC (Henderson et al., 2012). However, according to our review, other brain areas, apart from M1 and DLPFC also showed promising effects in modulating ANS function, such as parietal (Silber et al., 2000; van Honk et al., 2003; Lai et al., 2010), occipital (Silber et al., 2000; Vernieri et al., 2009), frontal (Silber et al., 2000), vertex (Macefield et al., 1998; Yoshida et al., 2001) and temporal (Montenegro et al., 2011) regions. In the case of TDCS the effects of stimulation might be related not only due to the position of the anode, but also to the combined action of the cathode electrode. For instance, Montenegro et al. (2011), in order to reach the insular cortex, one of the key areas for autonomic control, placed the anode over T3 area according to the international EEG 10–20 system. These authors found significant changes in autonomic parameters and discussed that some of these effects may be due to the reference electrode placed at the contralateral supra-orbital region. Therefore, it is important to consider the site of both electrodes positioning with the aid of computer-based tDCS modeling (Bikson et al., 2012).

Regarding TMS, other targets have been implicated in the ANS modulation in humans, such as the spinal cord (Paxton et al., 2011) and cerebellum (Demirtas-Tatlidede et al., 2011). Therefore, these two regions (spinal cord and cerebellum) should be further explored in future studies addressing ANS modulation induced by NIBS.

Another important consideration when choosing the stimulation target is the hemisphere of stimulation. We found no differences of ANS effects according to the hemisphere of NIBS stimulation. However, there are some studies suggesting lateralization for brain-related autonomic areas associated with some ANS functions. For instance, it has been shown that the left insular cortex would be related to parasympathetic autonomic activity, whereas the right insular cortex would mediate sympathetic autonomic activity (Oppenheimer et al., 1992; Brunoni et al., 2011). For instance, direct cortical stimulation in humans can increase or decrease BP and HR, depending on the side of cortex stimulated (Oppenheimer et al., 1992). Consequently, because of the side of stimulation might potentiate NIBS effects on autonomic function, it is important to consider this issue in future NIBS/ANS studies. One relevant issue when considering NIBS to study ANS function is whether the goal is to induce plasticity (for instance with protocols of rTMS or tDCS) or only transient disruption (for instance with single pulse TMS). This is critical as to modify study design. For example, studies using protocols to induce long-lasting plastic changes should plan to conduct longer follow-up autonomic assessments (hours, days and weeks) as previously shown (Yuki-masa et al., 2006; Udupa et al., 2007; Vernieri et al., 2009; Yozbat-iran et al., 2009; Kuppuswamy et al., 2011). Another important issue to be considered when planning NIBS/ANS studies is the type of TMS coil. Whereas the figure-of-eight coil is the preferred method for focal stimulation, (Wassermann et al., 1992), the circular coil is recommended to obtain current distribution in larger and deeper areas (Sekino and Ueno, 2004) or those coils proposed by Deng et al. (2013) that can more reliable target deep brain structures.

The correct use of an adequate control group is also a matter of concern. Although most of the reviewed studies used a sham control group, the type of sham stimulation was quite variable throughout them. For instance, in the study of Lai et al. (2010), the control group consisted in leaving the patients at rest in a bed without TMS. On the other hand, Yoshida et al. (2001) used a circular coil for testing and figure-of-eight coil for sham stimulation. Both authors found a positive association between TMS and acute alterations on HRV, but using those types of sham stimulation, these effects could have been attributed to other factors apart from the TMS i.e., auditory click or further arousal effects induced by the figure-of-eight coil. In another study (Osuch et al., 2009), the rTMS coil was placed at a 45° to the head, producing nerve and muscle stimulation on the face and scalp. Although it has been used in previous studies (George et al., 1997; Kimbrell et al., 1999) some authors have suggested it has a significant active component (Loo et al., 2000). If this is true, false negative results could have been obtained. Actually, the quality of sham stimulation is crucial for analyzing the effects of NIBS on vegetative responses, since autonomic responses are known to be very liable to any stimulant, including imagery (Papadelis et al., 2007). Therefore, in order to compare groups reliably, the sham should be as similar as possible to real stimulation, but without inducing any active physical en-
nergy. In order to improve the quality of sham stimulation some special coils have been developed. For instance, Okabe and Ugawa (2003) developed a sham coil that also delivered electrical co-stimulation to the skin and Arana et al. (2008) claimed that the best sham condition is achieved with individual titration of the electrical stimulation intensity. In the same way, Rossi et al. (2007) also have created a new method of sham stimulation, known as real electromagnetic placebo, in which a fake wood-made coil, with the same shape as a real TMS coil, is attached to the real coil. For tDCS, perhaps the best is to use subthreshold stimulation. Indeed, O’Connell et al. (2012) proposed that ideal blinding for tDCS would be reached with the use of 1 mA stimulation and positive results from studies using 2 mA should be interpreted with caution.

Given the effects of TMS and tDCS in neuroplasticity and the results we have shown in this review, it is expected that both techniques would have a therapeutic effect on several diseases in which the ANS plays a major role, such as arterial hypertension (Esler, 2000), heart failure (Li and Patel, 2003), obesity (Seals and Bell, 2004), diabetes (Esler et al., 2001), migraine (Shechter et al., 2002), obstructive sleep apnea complications (Lurie, 2011), parkinsonian syndrome (Jodice et al., 2011), vasovagal syncope (Kanjwal et al., 2011), septic shock (Pancoto et al., 2008), primary palmar hyperhidrosis (Schestatsky et al., 2011), complex regional pain syndrome (Marinus et al., 2011) and postural tachycardia syndrome (Mathias et al., 2011). In these conditions one potential approach to be tested is the use of a closed loop system – for instance, NIBS is triggered by increase in autonomic activity (i.e., blood pressure) – rather than off-line basis, in order to optimize brain plasticity and consequently clinical positive outcomes (Priori et al., 2009).

A potential explanation for the lack of association between NIBS and ANS could be the suboptimal use of autonomic tests. The most commonly used tests were the variation of blood pressure and heart rate in response to brain stimulation. Although easily performed, both tests may be insensitive to subtle ANS changes when performed without challenge or provocative maneuvers. According to Low (2003), heart rate in response to deep breathing – a classic autonomic provocative maneuver – is probably preferable to most others, since both afferent and efferent pathways are vagal, most patients are able to cooperate with the procedure, and the confounding variables (i.e., blood pressure) – rather than off-line basis, in order to optimize brain plasticity and consequently clinical positive outcomes (Priori et al., 2009).

Few of the analyzed studies specified subjects and environmental conditions before autonomic tests were performed. These are all important factors that might have affected autonomic responses and include room temperature and humidity, stress, exhaustion, use of medications that might interfere with cortical or autonomic excitability (Low, 2003; Hilz and Dütsch, 2006). We found that HRV was the more sensitive test in predicting ANS changes. Indeed, Ziegler et al. (1992) evaluated cardiovagal function in 261 patients with diabetes of different severity using HRV and found excellent accuracy in the diagnosis of autonomic dysfunction. Electrodermal activity (SC or SSR), although very liable to external background stimuli, is considered a good index of arousal, which is an important confounding factor in autonomic studies and, therefore, its use should be encouraged to help to disentangle arousal versus plastic autonomic effects in NIBS studies. Other techniques such as QSART and microneurography, although very accurate means of assessing sympathetic function, are unable to detect preganglionic dysfunction and do not provide information on the parasympathetic branch of the ANS (Illigens and Gibbons, 2009). Finally, it is important to underscore that, although CVR provides consistent data on autonomic plasticity in NIBS studies (Vernieri et al., 2009, 2010), there is still no standardization of the technique and, therefore, its use cannot be recommended systematically. Finally, the use of brain derived neurotrophic factor measurement (BDNF) has been linked to plastic effects in anesthetized animals (Gersner et al., 2011) and also might help to select specific forms or neurostimulation depending on BDNF polymorphism i.e., variants Val/Met (Jayasekaran et al., 2011; Cirillo et al., 2012). Therefore this could be also used for future studies on autonomic NIBS-induced plasticity.

In summary, to date, there is no conclusive evidence of the effects of NIBS on ANS, including its potential therapeutic effect for autonomic disorders. While positive results have frequently been reported in both open-label and randomized controlled studies, several treatment parameters, such as location, frequency, intensity and duration, have been used unsystematically, making the interpretation of the results difficult and providing little guidance on what treatment parameters may be the most useful to modulate ANS parameters. Further studies with ANS function as a primary outcome and NIBS on other brain areas with specific stimulation parameters will be helpful to understand cortical control of ANS function and also potential therapeutic strategies for ANS disorders. Finally, novel strategies of stimulation such as primed 1 Hz stimulation (Iyer et al., 2003) or theta burst TMS stimulation (Huang et al., 2005) also in combination with tDCS (Hasan et al., 2012) might offer advantages to modulate ANS function as
they may induce longer lasting effects on neuroplasticity (Fregni and Pascual-Leone, 2007).

Based on the data presented in this article, some methodological recommendations are proposed for future NIBS studies involving the ANS (Fig. 4).

Acknowledgements

The authors are grateful to Olivia Tousignant-Pienkos for her assistance during the data collection, to Fernanda Queiros for her assistance in data analysis and to Deborah Nadler for her assistance in copyediting this manuscript. We also want to thanks the grant from CAPES-Brazil: BEX 9605/11-5 (PS) and 9722/11-4 (MS).

References

