Surface Projections of the Heart and Great Vessels

Learn to visualize the underlying structures of the heart as you examine the anterior chest. Understanding cardiac anatomy and physiology is particularly important in the examination of the cardiovascular system.

Note that the right ventricle occupies most of the anterior cardiac surface. This chamber and the pulmonary artery form a wedgelike structure behind and to the left of the sternum.
The inferior border of the right ventricle lies below the junction of the sternum and the xiphoid process. The right ventricle narrows superiorly and meets the pulmonary artery at the level of the sternum or “base of the heart”—a clinical term that refers to the right and left 2nd interspaces close to the sternum.

The left ventricle, behind the right ventricle and to the left, forms the left lateral margin of the heart. Its tapered inferior tip is often termed the cardiac “apex.” It is clinically important because it produces the apical impulse, sometimes called the point of maximal impulse, or PMI.* This impulse locates the left border of the heart and is usually found in the 5th interspace 7 cm to 9 cm lateral to the midsternal line. It is about the size of a quarter, roughly 1 to 2.5 cm in diameter.

The right heart border is formed by the right atrium, a chamber not usually identifiable on physical examination. The left atrium is mostly posterior and cannot be examined directly, although its small atrial appendage may make up a segment of the left heart border between the pulmonary and the left ventricle.

*Because the most prominent cardiac impulse may not be apical, some authorities discourage use of this term.
Above the heart lie the great vessels. The pulmonary artery, already mentioned, bifurcates quickly into its left and right branches. The aorta curves upward from the left ventricle to the level of the sternal angle, where it arches backward to the left and then down. On the right, the superior vena cava empties into the right atrium.

Although not illustrated, the inferior vena cava also empties into the right atrium. The superior and inferior vena cavae carry venous blood to the heart from the upper and lower portions of the body.

Cardiac Chambers, Valves, and Circulation

Circulation through the heart is shown in the diagram below, which identifies the cardiac chambers, valves, and direction of blood flow. Because of their positions, the tricuspid and mitral valves are often called atrioventricular valves. The aortic and pulmonic valves are called semilunar valves because each of their leaflets is shaped like a half moon. Although this diagram shows all valves in an open position, they are not all open simultaneously in the living heart.

As the heart valves close, the heart sounds arise from vibrations emanating from the leaflets, the adjacent cardiac structures, and the flow of blood. It is essential to understand the positions and movements of the valves in relation to events in the cardiac cycle.
Events in the Cardiac Cycle

The heart serves as a muscular pump that generates varying pressures as its chambers contract and relax. *Systole is the period of ventricular contraction.* In the diagram shown below, pressure in the left ventricle rises from less than 5 mm Hg in its resting state to a normal peak of 120 mm Hg. After the ventricle ejects much of its blood into the aorta, the pressure levels off and starts to fall. *Diastole is the period of ventricular relaxation.* Ventricular pressure falls further to below 5 mm Hg, and blood flows from atrium to ventricle. Late in diastole, ventricular pressure rises slightly during inflow of blood from atrial contraction.

Note that during *systole* the aortic valve is open, allowing ejection of blood from the left ventricle into the aorta. The mitral valve is closed, preventing blood from regurgitating back into the left atrium. In contrast, during *diastole* the aortic valve is closed, preventing regurgitation of blood from the aorta back into the left ventricle. The mitral valve is open, allowing blood to flow from the left atrium into the relaxed left ventricle.

Understanding the interrelationships of the pressures in these three chambers—left atrium, left ventricle, and aorta—together with the position and movement of the valves is fundamental to understanding heart sounds. These changing pressures and the sounds that result are traced here through one cardiac cycle. Note that during auscultation the first and second heart sounds define the duration of *systole* and *diastole.*
During diastole, pressure in the blood-filled left atrium slightly exceeds that in the relaxed left ventricle, and blood flows from left atrium to left ventricle across the open mitral valve. Just before the onset of ventricular systole, atrial contraction produces a slight pressure rise in both chambers.

During systole, the left ventricle starts to contract and ventricular pressure rapidly exceeds left atrial pressure, thus shutting the mitral valve. Closure of the mitral valve produces the first heart sound, S_1.†

As left ventricular pressure continues to rise, it quickly exceeds the pressure in the aorta and forces the aortic valve open. In some pathologic conditions, opening of the aortic valve is accompanied by an early systolic ejection sound (E_j). Normally, maximal left ventricular pressure corresponds to systolic blood pressure.

As the left ventricle ejects most of its blood, ventricular pressure begins to fall. When left ventricular pressure drops below aortic pressure, the aortic valve shuts. Aortic valve closure produces the second heart sound, S_2, and another diastole begins.

†An extensive literature deals with the exact causes of heart sounds. Possible explanations include actual closure of valve leaflets, tensing of related structures, leaflet positions and pressure gradients at the time of atrial and ventricular systole, and the impact of columns of blood. The explanations given here are oversimplified but retain clinical usefulness.
In **diastole**, left ventricular pressure continues to drop and falls below left atrial pressure. The mitral valve opens. This is usually a silent event, but may be audible as a pathologic opening snap (OS) if valve leaflet motion is restricted, as in mitral stenosis.

After the mitral valve opens, there is a period of rapid ventricular filling as blood flows early in diastole from left atrium to left ventricle. In children and young adults, a third heart sound, S_3, may arise from rapid deceleration of the column of blood against the ventricular wall. In older adults, an S_3, sometimes termed “an S_3 gallop,” usually indicates a pathologic change in ventricular compliance.

Finally, although not often heard in normal adults, a fourth heart sound, S_4, marks atrial contraction. It immediately precedes S_1 of the next beat, and also reflects a pathologic change in ventricular compliance.

The Splitting of Heart Sounds

While these events are occurring on the left side of the heart, similar changes are occurring on the right, involving the right atrium, right ventricle, tricuspid valve, pulmonic valve, and pulmonary artery. Right ventricular and pulmonary arterial pressures are significantly lower than corresponding pressures on the left side. Furthermore, right-sided events usually occur slightly later than those on the left. Instead of a single heart sound, you may hear two discernible components, the first from left-sided
aortic valve closure, or A_2, and the second from right-sided closure of the pulmonic valve, or P_2.

Consider the second heart sound and its two components, A_2 and P_2, which come from closure of the aortic and pulmonic valves respectively. During expiration, these two components are fused into a single sound, S_2. During inspiration, however, A_2 and P_2 separate slightly, and S_2 may split into its two audible components.

Current explanations of inspiratory splitting cite increased capacitance in the pulmonary vascular bed during inspiration, which prolongs ejection of blood from the right ventricle, delaying closure of the pulmonic valve, or P_2. Ejection of blood from the left ventricle is comparatively shorter, so A_2 occurs slightly earlier.

Of the two components of the second heart sound, A_2 is normally louder, reflecting the high pressure in the aorta. It is heard throughout the precordium. P_2, in contrast, is relatively soft, reflecting the lower pressure in the pulmonary artery. It is heard best in its own area—the 2nd and 3rd left interspaces close to the sternum. It is here that you should search for splitting of the second heart sound.

S_1 also has two components, an earlier mitral and a later tricuspid sound. The mitral sound, its principal component, is much louder, again reflecting the high pressures on the left side of the heart. It can be heard throughout the precordium and is loudest at the cardiac apex. The softer tricuspid component is heard best at the lower left sternal border, and it is here that you may hear a split S_1. The earlier louder mitral component may mask the tricuspid sound, however, and splitting is not always detectable. Splitting of S_1 does not vary with respiration.

Heart Murmurs

Heart murmurs are distinguishable from heart sounds by their longer duration. They are attributed to turbulent blood flow and may be “innocent,” as with flow murmurs of young adults, or diagnostic of valvular heart disease. A stenotic valve has an abnormally narrowed valvular orifice that obstructs blood flow, as in aortic stenosis, and causes a characteristic murmur. So does a valve that fails to fully close, as in aortic regurgitation or insuffi-
iciency. Such a valve allows blood to leak backward in a retrograde direction and produces a *regurgitant* murmur.

To identify murmurs accurately, you must learn to assess the chest wall location where they are best heard, their timing in systole or diastole, and their qualities. In the section on Techniques of Examination, you will learn to integrate several characteristics, including murmur intensity, pitch, duration, and direction of radiation (see pp. __–__).

Relation of Auscultatory Findings to the Chest Wall

The locations on the chest wall where you hear heart sounds and murmurs help to identify the valve or chamber where they originate. Sounds and murmurs arising from the mitral valve are usually heard best at and around the cardiac apex. Those originating in the tricuspid valve are heard best at or near the lower left sternal border. Murmurs arising from the pulmonic valve are usually heard best in the 2nd and 3rd left interspaces close to the sternum, but at times may also be heard at higher or lower levels, and those originating in the aortic valve may be heard anywhere from the right 2nd interspace to the apex. These areas overlap, as illustrated below, and you will need to correlate auscultatory findings with other portions of the cardiac examination to identify sounds and murmurs accurately.
The Conduction System

An electrical conduction system stimulates and coordinates the contraction of cardiac muscle.

Each normal electrical impulse is initiated in the sinus node, a group of specialized cardiac cells located in the right atrium near the junction of the vena cava. The sinus node acts as the cardiac pacemaker and automatically discharges an impulse about 60 to 100 times a minute. This impulse travels through both atria to the atrioventricular node, a specialized group of cells located low in the atrial septum. Here the impulse is delayed before passing down the bundle of His and its branches to the ventricular myocardium. Muscular contraction follows: first the atria, then the ventricles. The normal conduction pathway is diagrammed in simplified form at the right.

The electrocardiogram, or ECG, records these events. Contraction of cardiac smooth muscle produces electrical activity, resulting in a series of waves on the ECG. The components of the normal ECG and their duration are briefly summarized here, but you will need further instruction and practice to interpret recordings from actual patients.

- The small P wave of atrial depolarization (duration up to 8 milliseconds; PR interval up to 20 milliseconds)
- The larger QRS complex of ventricular depolarization (up to 10 milliseconds), consisting of one or more of the following:
 - the Q wave, a downward deflection from septal depolarization
 - the R wave, an upward deflection from ventricular depolarization
 - the S wave, a downward deflection following an R wave
- A T wave of ventricular repolarization, or recovery (duration relates to QRS).
The Heart as a Pump

The left and right ventricles pump blood into the systemic and pulmonary arterial trees, respectively. Cardiac output, the volume of blood ejected from each ventricle during 1 minute, is the product of heart rate and stroke volume. Stroke volume (the volume of blood ejected with each heartbeat) depends in turn on preload, myocardial contractility, and afterload.

Preload refers to the load that stretches the cardiac muscle prior to contraction. The volume of blood in the right ventricle at the end of diastole, then, constitutes its preload for the next beat. Right ventricular preload is increased by increasing venous return to the right heart. Physiologic causes include inspiration and the increased volume of blood that flows from exercising muscles. The increased volume of blood in a dilated ventricle of congestive heart failure also increases preload. Causes of decreased right ventricular preload include exhalation, decreased left ventricular output, and pooling of blood in the capillary bed or the venous system.

Myocardial contractility refers to the ability of the cardiac muscle, when given a load, to shorten. Contractility increases when stimulated by action of the sympathetic nervous system, and decreases when blood flow or oxygen delivery to the myocardium is impaired.

Afterload refers to the vascular resistance against which the ventricle must contract. Sources of resistance to left ventricular contraction include the tone in the walls of the aorta, the large arteries, and the peripheral vascular tree (primarily the small arteries and arterioles), as well as the volume of blood already in the aorta.

Pathologic increases in preload and afterload, called volume overload and pressure overload respectively, produce changes in ventricular function that may be clinically detectable. These changes include alterations in ventricular impulses, detectable by palpation, and in normal heart sounds. Pathologic heart sounds and murmurs may also develop.
Arterial Pulses and Blood Pressure

With each contraction, the left ventricle ejects a volume of blood into the aorta and on into the arterial tree. The ensuing pressure wave moves rapidly through the arterial system, where it is felt as the arterial pulse. Although the pressure wave travels quickly—many times faster than the blood itself—a palpable delay between ventricular contraction and peripheral pulses makes the pulses in the arms and legs unsuitable for timing events in the cardiac cycle.

Blood pressure in the arterial system varies during the cardiac cycle, peaking in systole and falling to its lowest trough in diastole. These are the levels that are measured with the blood pressure cuff, or sphygmomanometer. The difference between systolic and diastolic pressures is known as the pulse pressure.

The principal factors influencing arterial pressure are:

- Left ventricular stroke volume
- Distensibility of the aorta and the large arteries
- Peripheral vascular resistance, particularly at the arteriolar level
- Volume of blood in the arterial system.

Changes in any of these four factors alter systolic pressure, diastolic pressure, or both. Blood pressure levels fluctuate strikingly through any 24-hour period, varying with physical activity, emotional state, pain, noise, environmental temperature, the use of coffee, tobacco, and other drugs, and even the time of day.
Jugular Venous Pressure and Pulses

Jugular Venous Pressure (JVP). Systemic venous pressure is much lower than arterial pressure. Although venous pressure ultimately depends on left ventricular contraction, much of this force is dissipated as blood passes through the arterial tree and the capillary bed. Walls of veins contain less smooth muscle than walls of arteries, which reduces venous vascular tone and makes veins more distensible. Other important determinants of venous pressure include blood volume and the capacity of the right heart to eject blood into the pulmonary arterial system. Cardiac disease may alter these variables, producing abnormalities in central venous pressure. For example, venous pressure falls when left ventricular output or blood volume is significantly reduced; it rises when the right heart fails or when increased pressure in the pericardial sac impedes the return of blood to the right atrium. These venous pressure changes are reflected in the height of the venous column of blood in the internal jugular veins, termed the jugular venous pressure or JVP.

Pressure in the jugular veins reflects right atrial pressure, giving clinicians an important clinical indicator of cardiac function and right heart hemodynamics. Assessing the JVP is an essential, though challenging, clinical skill. The JVP is best estimated from the internal jugular vein, usually on the right side, since the right internal jugular vein has a more direct anatomic channel into the right atrium.

The internal jugular veins lie deep to the sternomastoid muscles in the neck and are not directly visible, so the clinician must learn to identify the pulsa-
tions of the internal jugular vein that are transmitted to the surface of the neck, making sure to carefully distinguish these venous pulsations from pulsations of the carotid artery. If pulsations from the internal jugular vein cannot be identified, those of the external jugular vein can be used, but they are less reliable.

To estimate the level of the JVP, you will learn to find the highest point of oscillation in the internal jugular vein or, if necessary, the point above which the external jugular vein appears collapsed. The JVP is usually measured in vertical distance above the sternal angle, the bony ridge adjacent to the second rib where the manubrium joins the body of the sternum.

Study the illustrations below very carefully. Note that regardless of the patient’s position, the sternal angle remains roughly 5 cm above the right atrium. In this patient, however, the pressure in the internal jugular vein is somewhat elevated.

■ In Position A, the head of the bed is raised to the usual level, about 30°, but the JVP cannot be measured because the meniscus, or level of oscillation, is above the jaw and therefore not visible.

■ In Position B, the head of the bed is raised to 60°. The “top” of the internal jugular vein is now easily visible, so the vertical distance from the sternal angle or right atrium can now be measured.

■ In Position C, the patient is upright and the veins are barely discernible above the clavicle, making measurement untenable.

Note that the height of the venous pressure as measured from the sternal angle is the same in all three positions, but your ability to measure the height of the column of venous blood, or JVP, differs according to how you position the patient. Jugular venous pressure measured at more than 4 cm above
the sternal angle, or more than 9 cm above the right atrium, is considered elevated or abnormal. The techniques for measuring the JVP are fully described in Techniques of Examination on pp. __–__.

Jugular Venous Pulsations. The oscillations that you see in the internal jugular veins (and often in the externals as well) reflect changing pressures within the right atrium. The right internal jugular vein empties more directly into the right atrium and reflects these pressure changes best.

Careful observation reveals that the undulating pulsations of the internal jugular veins (and sometimes the externals) are composed of two quick peaks and two troughs.

The first elevation, the *a wave*, reflects the slight rise in atrial pressure that accompanies atrial contraction. It occurs just before the first heart sound and before the carotid pulse.

The following trough, the *x descent*, starts with atrial relaxation. It continues as the right ventricle, contracting during systole, pulls the floor of the atrium downward. During ventricular systole, blood continues to flow into the right atrium from the venae cavae. The tricuspid valve is closed, the chamber begins to fill, and right atrial pressure begins to rise again, creating the second elevation, the *v wave*. When the tricuspid valve opens early in diastole, blood in the right atrium flows passively into the right ventricle and right atrial pressure falls again, creating the second trough or *y descent*. To remember these four oscillations in a somewhat oversimplified way, think of the following sequence: atrial contraction, atrial relaxation, atrial filling, and atrial emptying. (You can think of the *a* wave as *atrial contraction* and the *v* wave as *venous filling*.)

To the naked eye, the two descents are the most obvious events in the normal jugular pulse. Of the two, the sudden collapse of the *x descent* late in systole is the more prominent, occurring just before the second heart sound. The *y* descent follows the second heart sound early in diastole.

Changes With Aging

Cardiovascular findings vary significantly with age. Aging may affect the location of the apical impulse, the pitch of heart sounds and murmurs, the stiffness of the arteries, and blood pressure.

The Apical Impulse and Heart Sounds. The *apical impulse* is usually felt easily in children and young adults; as the chest deepens in its anteroposterior diameter, the impulse gets harder to find. For the same reason, *splitting of the second heart sound* may be harder to hear in older people as its pulmonic component becomes less audible. A physiologic *third heart sound*,
commonly heard in children and young adults, may persist as late as the age of 40, especially in women. After approximately age 40, however, an \(S_3 \) strongly suggests either ventricular failure or volume overload of the ventricle from valvular heart disease such as mitral regurgitation. In contrast, a *fourth heart sound* is seldom heard in young adults unless they are well-conditioned athletes. An \(S_4 \) may be heard in apparently healthy older people, but is also frequently associated with decreased ventricular compliance from heart disease. (See Table 7-5, Extra Heart Sounds in Diastole, p. ___.)

Cardiac Murmurs. At some time over the life span, almost everyone has a *heart murmur*. Most murmurs occur without other evidence of cardiovascular abnormality and may therefore be considered innocent normal variants. These common murmurs vary with age, and familiarity with their patterns helps you to distinguish normal from abnormal.

Children, adolescents, and young adults frequently have an innocent systolic murmur, often called a *flow murmur*, that is felt to reflect pulmonic blood flow. It is usually heard best in the 2nd to 4th left interspaces (see p. ___).

Late in pregnancy and during lactation, many women have a so-called *mammary soufflé* secondary to increased blood flow in their breasts. Although this murmur may be noted anywhere in the breasts, it is often heard most easily in the 2nd or 3rd interspace on either side of the sternum. A mammary soufflé is typically both systolic and diastolic, but sometimes only the louder systolic component is audible.

Middle-aged and older adults commonly have an *aortic systolic murmur*. This has been heard in about a third of people near the age of 60, and in well over half of those reaching 85. Aging thickens the bases of the aortic cusps with fibrous tissue, calcification follows, and audible vibrations result. Turbulence produced by blood flow into a dilated aorta may contribute to this murmur. In most people, this process of fibrosis and calcification—known as *aortic sclerosis*—does not impede blood flow. In some, however, the valve cusps become progressively calcified and immobile, and true *aortic stenosis*, or obstruction of flow, develops. A normal carotid upstroke may help distinguish aortic sclerosis from aortic stenosis (in which the carotid upstroke is delayed), but clinical differentiation between benign aortic sclerosis and pathologic aortic stenosis may be difficult.

A similar aging process affects the mitral valve, usually about a decade later than aortic sclerosis. Here degenerative changes with calcification of the mitral annulus, or valve ring, impair the ability of the mitral valve to close normally during systole, and cause the *systolic murmur of mitral regurgitation*. Because of the extra load placed on the heart by the leaking mitral valve, a murmur of mitral regurgitation cannot be considered innocent.

Murmurs may originate in large blood vessels as well as in the heart. The *jugular venous hum*, which is very common in children and may still be heard through young adulthood, illustrates this point (see p. ___). A second, more
important example is the **cervical systolic murmur or bruit**. In older people, systolic bruits heard in the middle or upper portions of the carotid arteries suggest, but do not prove, a partial arterial obstruction secondary to atherosclerosis. In contrast, cervical bruits in younger people are usually innocent. In children and young adults, systolic murmurs (bruits) are frequently heard just above the clavicle. Studies have shown that, while cervical bruits can be heard in almost 9 out of 10 children under the age of 5, their prevalence falls steadily to about 1 out of 3 in adolescence and young adulthood and to less than 1 out of 10 in middle age.

Arteries and Blood Pressure. The aorta and large arteries stiffen with age as they become atherosclerotic. As the aorta becomes less distensible, a given stroke volume causes a greater rise in systolic blood pressure; **systolic hypertension** with a **widened pulse pressure** often ensues. Peripheral arteries tend to lengthen, become tortuous, and feel harder and less resilient. These changes do not necessarily indicate atherosclerosis, however, and you can make no inferences from them as to disease in the coronary or cerebral vessels. Lengthening and tortuosity of the aorta and its branches occasionally result in kinking or buckling of the carotid artery low in the neck, especially on the right. The resulting pulsatile mass, which occurs chiefly in hypertensive women, may be mistaken for a carotid aneurysm—a true dilatation of the artery. A tortuous aorta occasionally raises the pressure in the jugular veins on the left side of the neck by impairing their drainage within the thorax.

In Western societies, systolic blood pressure tends to rise from childhood through old age. Diastolic blood pressure stops rising, however, roughly around the sixth decade. On the other extreme, some elderly people develop an increased tendency toward **postural (orthostatic) hypotension**—a sudden drop in blood pressure when they rise to a sitting or standing position. Elderly people are also more likely to have abnormal heart rhythms. These arrhythmias, like postural hypotension, may cause **syncope**, or temporary loss of consciousness.

THE HEALTH HISTORY

Common or Concerning Symptoms

- Chest Pain
- Palpitations
- Shortness of breath, orthopnea, or paroxysmal dyspnea
- Swelling or edema

Chest pain or discomfort is one of the most important symptoms you will assess as a clinician. As you listen to the patient’s story, you must always keep serious adverse events in mind, such as **angina pectoris**, **myocardial infarction**, or even a **dissecting aortic aneurysm**. This section approaches chest symp-

See Table 6-1, Chest Pain, pp. ___-__.
From the cardiac standpoint, including chest pain, palpitations, orthopnea, paroxysmal nocturnal dyspnea (PND), and edema. For this complaint, however, it is wise to think through the range of possible cardiac, pulmonary, and extrathoracic etiologies. You should review the Health History section of Chapter 6, The Thorax and Lungs, which enumerates the various possible sources of chest pain: the myocardium, the pericardium, the aorta, the trachea and large bronchi, the parietal pleura, the esophagus, the chest wall, and extrathoracic structures such as the neck, gallbladder, and stomach. This review is important, since symptoms such as dyspnea, wheezing, cough, and even hemoptysis (see pp. __–__) can be cardiac as well as pulmonary in origin.

Your initial questions should be broad . . . “Do you have any pain or discomfort in your chest?” Ask the patient to point to the pain and to describe all seven of its attributes. After listening closely to the patient’s description, move on to more specific questions such as “Is the pain related to exertion?” and “What kinds of activities bring on the pain?” Also “How intense is the pain, on a scale of 1 to 10?” . . . “Does it radiate into the neck, shoulder, back, or down your arm?” . . . “Are there any associated symptoms like shortness of breath, sweating, palpitations, or nausea?” . . . “Does it ever wake you up at night?” . . . “What do you do to make it better?”

Palpitations are an unpleasant awareness of the heartbeat. When reporting these sensations, patients use various terms such as skipping, racing, fluttering, pounding, or stopping of the heart. Palpitations may result from an irregular heartbeat, from rapid acceleration or slowing of the heart, or from increased forcefulness of cardiac contraction. Such perceptions, however, also depend on the sensitivities of patients to their own body sensations. Palpitations do not necessarily mean heart disease. In contrast, the most serious dysrhythmias, such as ventricular tachycardia, often do not produce palpitations.

You may ask directly about palpitations, but if the patient does not understand your question, reword it. “Are you ever aware of your heartbeat? What is it like?” Ask the patient to tap out the rhythm with a hand or finger. Was it fast or slow? Regular or irregular? How long did it last? If there was an episode of rapid heartbeats, did they start and stop suddenly or gradually? (For this group of symptoms, an electrocardiogram is indicated.)

You may wish to teach selected patients how to make serial measurements of their pulse rates in case they have further episodes.

Shortness of breath is a common patient concern and may be reported as dyspnea, orthopnea, or paroxysmal nocturnal dyspnea. Dyspnea is an uncomfortable awareness of breathing that is inappropriate to a given level of exertion. This complaint is often made by patients with cardiac and/or pulmonary problems, as discussed in Chapter 6, The Thorax and Lungs, p. __.

Orthopnea is dyspnea that occurs when the patient is lying down and improves when the patient sits up. Classically, it is quantified according to the

Examples of Abnormalities

Exertional chest pain with radiation to the left side of the neck and down the left arm in *angina pectoris*; sharp pain radiating into the back or into the neck in *aortic dissection*.

See Table 3-10 and 3-11 for selected heart rates and rhythms (pp. __–__) Symptons or signs of irregular heart action warrant an electrocardiogram. Only *atrial fibrillation*, which is “irregularly irregular,” can be reliably identified at the bedside.

Clues in the history include transient skips and flipflops (possible premature contractions); rapid regular beating of sudden onset and offset (possible paroxysmal supraventricular tachycardia); a rapid regular rate of less than 120 beats per minute, especially if starting and stopping more gradually (possible sinus tachycardia).

Orthopnea suggests left ventricular heart failure or mitral stenosis; it
number of pillows the patient uses for sleeping, or by the fact that the patient needs to sleep sitting up. (Make sure, however, that the patient uses extra pillows or sleeps upright because of shortness of breath when supine and not for other reasons.)

Paroxysmal nocturnal dyspnea, or PND, describes episodes of sudden dyspnea and orthopnea that awaken the patient from sleep, usually 1 or 2 hours after going to bed, prompting the patient to sit up, stand up, or go to a window for air. There may be associated wheezing and coughing. The episode usually subsides but may recur at about the same time on subsequent nights.

Edema refers to the accumulation of excessive fluid in the interstitial tissue spaces and appears as swelling. Questions about edema are typically included in the cardiac history, but edema has many other causes, both local and general. Focus your questions on the location, timing, and setting of the swelling, and on associated symptoms. “Have you had any swelling anywhere? Where? . . . Anywhere else? When does it occur? Is it worse in the morning or at night? Do your shoes get tight?”

Continue with “Are the rings tight on your fingers? Are your eyelids puffy or swollen in the morning? Have you had to let out your belt?” Also, “Have your clothes gotten too tight around the middle?” It is useful to ask patients who retain fluid to record daily morning weights, since edema may not be obvious until several liters of extra fluid have accumulated.

Examples of abnormalities may also accompany obstructive lung disease.

PND suggests left ventricular heart failure or mitral stenosis and may be mimicked by nocturnal asthma attacks.

See Table __, Mechanisms and Patterns of Edema, pp. __–__.

Dependent edema appears in the lowest body parts (the feet and lower legs) when sitting or the sacrum when bedridden. Causes may be cardiac (congestive heart failure), nutritional (hypoalbuminemia), or positional.

Edema occurs in renal and liver disease: periorbital puffiness, tight rings in nephrotic syndrome; enlarged waistline from ascites and liver failure.

Despite improvements in risk factor modification, cardiovascular disease remains the leading cause of death for both men and women, accounting for about one third of all U.S. deaths. Both primary prevention, in those without evidence of cardiovascular disease, and secondary prevention, in those with known cardiovascular events such as angina or myocardial infarction, remain important priorities for the office, the hospital, and the nation’s public health. Education and counseling will guide your patients to maintain optimal levels of cholesterol, weight, and exercise.
In May 2001 the National Heart, Lung, and Blood Institute of the National Institutes of Health published the Third Report of the National Cholesterol Education Program Expert Panel, which sets standards for the detection, evaluation, and treatment of high cholesterol levels in adults. Students and clinicians are well-advised to review the Panel’s recommended guidelines, which can be summarized only briefly here.

First, obtain a fasting lipid profile in all adults aged 20 years or older once every 5 years. Your counseling and interventions should be based on the patient’s levels of low- and high-density lipoproteins, or LDL and HDL, and on the presence of cardiac risk factors. The report notes that the risk of cardiac disease increases continuously as the LDL levels range from low to high. It sets new targets for optimal lipid levels (mg/dL):

- LDL cholesterol <100
- Total cholesterol <200
- HDL cholesterol <40 is low; ≥60 is high

Second, assess additional major risk factors and “risk equivalents.” Risk factors are smoking, hypertension if blood pressure is greater than 140/90 mm Hg or the patient is on medication, HDL less than 40 mg/dL, family history of premature coronary heart disease (affected male first degree relative younger than 55 years; affected female younger than 65 years), and age, namely men 45 years or older and women 55 years or older. Risk equivalents include diabetes; other forms of atherosclerotic disease—peripheral vascular disease, abdominal aortic aneurysm, and symptomatic carotid artery disease; and 2 or more risk factors, raising the 10-year risk of coronary heart disease to more than 20%. The report includes tables for assessing 10-year risk for men and for women if multiple risk factors are present.

The desired goal for the patient’s LDL level varies according to the number of risk factors, as shown below.

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>LDL Level Goal (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1 risk factor</td>
<td><160</td>
</tr>
<tr>
<td>2+ or multiple risk factors</td>
<td><130</td>
</tr>
<tr>
<td>Coronary heart disease (CHD) or CHD risk equivalents</td>
<td><100</td>
</tr>
</tbody>
</table>

Additional treatment is recommended if the triglyceride level exceeds 200 mg/dL.

Once risk is assessed, your advice about risk reduction should cover lifestyle changes, including diet, weight reduction, and exercise, as well as drug ther-

apy when indicated. Dietary recommendations should begin with a dietary history (see pp.__–__), then target low intake of saturated fats (less than 7% of total calories) and cholesterol (less than 200 mg per day) and high intake of fiber, up to 20 to 30 grams per day. Together with the patient, review the basic principles for all healthy diets: high intake of fruits, vegetables, and grains; use of low-fat dairy products and lean meats, substituting chicken and fish when possible; and minimal intake of processed food and added salt and sugar, both when cooking and at the table. Eggs with yolks, the most concentrated source of cholesterol, should be limited to two to four per week. Sources of fiber include whole-grain breads; pasta; and oat, wheat, corn, or multigrain cereals.

For counseling about weight, apply the principles for assessing body mass index enumerated in Chapter 3 (pp. __–__). To maintain a desirable body weight, energy expended must balance calories consumed. Excess calories are stored as fat. Metabolism of food fat, which contains 9 calories of potential energy per gram, uses up fewer calories than metabolism of foods high in carbohydrate or protein, which provide 4 calories of energy per gram. Patients with high fat intake are more likely to accumulate body fat than patients with increased protein and carbohydrate intake (and patients with low-fat diets may lose weight more quickly). Review the patient’s eating habits and weight patterns in the family. Set realistic goals that will help the patient maintain healthy eating patterns for life.

Regular exercise is the number one recommendation of the U.S. Public Health Service’s Healthy People 2000. To reduce risk for coronary artery disease, counsel patients to pursue aerobic exercise, or exercise that increases muscle oxygen uptake. (Anaerobic exercise relies on energy sources within contracting muscles rather than inhaled oxygen and is usually nonsustained.) Deep breathing, sweating in cool temperatures, and pulse rates exceeding 60% of the maximum normal age-adjusted heart rate (220 minus the person’s age) are markers of aerobic exercise. Since the cardiovascular benefits of exercise are long term, to help motivate patients be sure to emphasize that the patient will look and feel better as soon as exercise begins. Before selecting an exercise regimen, do a thorough evaluation of any cardiovascular, pulmonary, or musculoskeletal conditions presenting a risk for exercise. Guiding the patient to make time to exercise as a regular activity is often more important than the type of exercise chosen. For cardiovascular benefit, patients should exercise for 20 to 60 minutes at least 3 times a week. For patients losing weight, paradoxically, the metabolic rate may drop when caloric intake declines, known as the starvation response. Regular exercise will counteract this response.

During the physical examination, it is important to screen for hypertension and for lipid-containing nodules on the skin, known as xanthomas. Hypertension (see p. __) contributes significantly to death from CHD and stroke. Recommended blood pressure screening for healthy adults is generally once every 2 years. Search for xanthomas in patients with familial hyperprotein disorders. These may appear around the eyelids, over extensor tendons, and occasionally as small eruptive papules on the extremities, buttocks, and trunk.
Preview: Recording the Physical Examination—
The Cardiovascular Examination

Note that initially you may use sentences to describe your findings; later you will use phrases. The style below contains phrases appropriate for most write-ups. Unfamiliar terms are explained in the next section, Techniques of Examination.

“The jugular venous pulse (JVP) is 3 cm above the sternal angle with the head of bed elevated to 30°. Carotid upstrokes are brisk, without bruits. The point of maximal impulse (PMI) is tapping, 7 cm lateral to the midsternal line in the 5th intercostal space. Good S1 and S2. No murmurs or extra sounds.”

OR

“The JVP is 5 cm above the sternal angle with the head of bed elevated to 50°. Carotid upstrokes are brisk; a bruit is heard over the left carotid artery. The PMI is diffuse, 3 cm in diameter, palpated at the anterior axillary line in the 5th and 6th intercostal spaces. S1 and S2 are soft. S3 present. Harsh 2/6 holosystolic murmur best heard at the apex, radiating to the lower left sternal border (LLSB). No S4 or diastolic murmurs.”

Suggests possible congestive heart failure with possible left carotid occlusion and mitral regurgitation.
As you begin the cardiovascular examination, review the blood pressure and heart rate recorded during the General Survey and Vital Signs at the start of the physical examination. If you need to repeat these measurements, or if they have not already been done, take the time to measure the blood pressure and heart rate using optimal technique (see Chapter 3, Beginning the Physical Examination: General Survey and Vital Signs, especially pp. __–__).

In brief, for blood pressure, after letting the patient rest for at least 5 minutes in a quiet setting, choose a correctly sized cuff and position the patient’s arm at heart level, either resting on a table if seated or supported at midchest level if standing. Make sure the bladder of the cuff is centered over the brachial artery. Inflate the cuff about 30 mm Hg above the pressure at which the radial pulse disappears. As you deflate the cuff, listen first for the sounds of at least two consecutive heartbeats—these mark the systolic pressure. Then listen for the disappearance point of the heartbeats, which marks the diastolic pressure. For heart rate, measure the radial pulse using the pads of your index and middle fingers, or assess the apical pulse using your stethoscope (see pp. __–__).

Now you are ready to systematically assess the components of the cardiovascular system:

- The jugular venous pressure
- The carotid upstrokes and presence or absence of bruits
- The point of maximal impulse (PMI) and any heaves, lifts, or thrills
- The first and second heart sounds, \(S_1 \) and \(S_2 \)
- Presence or absence of extra heart sounds such as \(S_3 \) or \(S_4 \)
- Presence or absence of any cardiac murmurs.

Jugular Venous Pressure and Pulsations

Jugular Venous Pressure (JVP). Estimating the JVP is one of the most important and frequently used skills of physical examination. At first it will seem difficult, but with practice and supervision you will find that the JVP provides valuable information about the patient’s volume status and cardiac function. As you have learned, the JVP reflects pressure in the right atrium, or central venous pressure, and is best assessed from pulsations in the right internal jugular vein. Note, however, that the jugular veins and pulsations are difficult to see in children younger than 12 years of age, so they are not useful for evaluating the cardiovascular system in this age group (see Chapter 17, pp. __–__).

To assist you in learning this portion of the cardiac examination, steps for assessing the JVP are outlined on the next page. As you begin your assessment, take a moment to reflect on the patient’s volume status and consider how you may need to alter the elevation of the head of the bed or examin-
ing table. The usual starting point for assessing the JVP is to elevate the head of the bed to 30°. Identify the external jugular vein on each side, then find the internal jugular venous pulsations transmitted from deep in the neck to the overlying soft tissues. The JVP is the elevation at which the highest oscillation point, or meniscus, of the jugular venous pulsations is usually evident in euvolemic patients. In patients who are hypovolemic, you may anticipate that the JVP will be low, causing you to subsequently lower the head of the bed, sometimes even to 0°, to see the point of oscillation best. Likewise, in volume-overloaded or hypervolemic patients, you may anticipate that the JVP will be high, causing you to subsequently raise the head of the bed.

EXAMPLES OF ABNORMALITIES

A hypovolemic patient may have to lie flat before you see the veins. In contrast, when jugular venous pressure is increased, an elevation up to 60° or even 90° may be required. In all these positions, the sternal angle usually remains about 5 cm above the right atrium, as diagrammed on p. ___.

STEPS FOR ASSESSING THE JUGULAR VENOUS PRESSURE (JVP)

- Make the patient comfortable. *Raise the head slightly on a pillow to relax the sternomastoid muscles.*
- *Raise the head of the bed or examining table to about 30°. Turn the patient’s head slightly away from the side you are inspecting.*
- Use tangential lighting and examine both sides of the neck. Identify the external jugular vein on each side, then find the internal jugular venous pulsations.
- *If necessary, raise or lower the head of the bed until you can see the oscillation point or meniscus of the internal jugular venous pulsations in the lower half of the neck.*
- Focus on the right internal jugular vein. Look for pulsations in the suprasternal notch, between the attachments of the sternomastoid muscle on the sternum and clavicle, or just posterior to the sternomastoid. The table below helps you distinguish internal jugular pulsations from those of the carotid artery.
- *Identify the highest point of pulsation in the right internal jugular vein.* Extend a long rectangular object or card horizontally from this point and a centimeter ruler vertically from the sternal angle, making an exact right angle. Measure the vertical distance in centimeters above the sternal angle where the horizontal object crosses the ruler. *This distance, measured in centimeters above the sternal angle or the atrium, is the JVP.*

The following features help to distinguish jugular from carotid artery pulsations:

<table>
<thead>
<tr>
<th>Internal Jugular Pulsations</th>
<th>Carotid Pulsations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rarely palpable</td>
<td>Palpable</td>
</tr>
<tr>
<td>Soft, rapid, undulating quality, usually with two elevations and two troughs per heart beat</td>
<td>A more vigorous thrust with a single outward component</td>
</tr>
<tr>
<td>Pulsations eliminated by light pressure on the vein(s) just above the sternal end of the clavicle</td>
<td>Pulsations not eliminated by this pressure</td>
</tr>
<tr>
<td>Level of the pulsations changes with position, dropping as the patient becomes more upright.</td>
<td>Level of the pulsations unchanged by position</td>
</tr>
<tr>
<td>Level of the pulsations usually descends with inspiration.</td>
<td>Level of the pulsations not affected by inspiration</td>
</tr>
</tbody>
</table>
Establishing the true vertical and horizontal lines to measure the JVP is difficult, much like the problem of hanging a picture straight when you are close to it. Place your ruler on the sternal angle and line it up with something in the room that you know to be vertical. Then place a card or rectangular object at an exact right angle to the ruler. This constitutes your horizontal line. Move it up or down—still horizontal—so that the lower edge rests at the top of the jugular pulsations, and read the vertical distance on the ruler. Round your measurement off to the nearest centimeter.

Venous pressure measured at greater than 3 cm or possibly 4 cm above the sternal angle, or more than 8 cm or 9 cm in total distance above the right atrium, is considered elevated above normal.

If you are unable to see pulsations in the internal jugular veins, look for them in the external jugulars, although they may not be visible here. If you see none, use the point above which the external jugular veins appear to collapse. Make this observation on each side of the neck. Measure the vertical distance of this point from the sternal angle.

The highest point of venous pulsations may lie below the level of the sternal angle. Under these circumstances, venous pressure is not elevated and seldom needs to be measured.

Even though students may not see clinicians making these measurements very frequently in clinical settings, practicing exact techniques for measuring the JVP is important. Eventually, with experience, clinicians and cardiologists come to identify the JVP and estimate its height visually.

Jugular Venous Pulsations. Observe the amplitude and timing of the jugular venous pulsations. In order to time these pulsations, feel the left carotid artery with your right thumb or listen to the heart simultaneously.

Increased pressure suggests right-sided heart failure or, less commonly, constrictive pericarditis, tricuspid stenosis, or superior vena cava obstruction.

In patients with obstructive lung disease, venous pressure may appear elevated on expiration only; the veins collapse on inspiration. This finding does not indicate congestive heart failure.

Unilateral distention of the external jugular vein is usually due to local kinking or obstruction. Occasionally, even bilateral distention has a local cause.

Prominent α waves indicate increased resistance to right atrial contraction, as in tricuspid stenosis.
The a wave just precedes S\textsubscript{1} and the carotid pulse, the x descent can be seen as a systolic collapse, the v wave almost coincides with S\textsubscript{2}, and the y descent follows early in diastole. Look for absent or unusually prominent waves.

Considerable practice and experience are required to master jugular venous pulsations. A beginner is probably well-advised to concentrate primarily on jugular venous pressure.

The Carotid Pulse

After you measure the JVP, move on to assessment of the carotid pulse. The carotid pulse provides valuable information about cardiac function and is especially useful for detecting stenosis or insufficiency of the aortic valve. Take the time to assess the quality of the carotid upstroke, its amplitude and contour, and presence or absence of any overlying thrills or bruits.

To assess amplitude and contour, the patient should be lying down with the head of the bed still elevated to about 30\degree. When feeling for the carotid artery, first inspect the neck for carotid pulsations. These may be visible just medial to the sternomastoid muscles. Then place your left index and middle fingers (or left thumb) on the right carotid artery in the lower third of the neck, press posteriorly, and feel for pulsations.

For irregular rhythms, see Table 3-10, Selected Heart Rates and Rhythms (p. __), and Table 3-4, Selected Irregular Rhythms (p.__).

A tortuous and kinked carotid artery may produce a unilateral pulsatile bulge.

Decreased pulsations may be caused by decreased stroke volume, but may also be due to local factors in the artery such as atherosclerotic narrowing or occlusion.

Although there is a widespread prejudice against using thumbs to assess pulses, they are useful for palpatating large arteries.
Press just inside the medial border of a well-relaxed sternomastoid muscle, roughly at the level of the cricoid cartilage. Avoid pressing on the carotid sinus, which lies at the level of the top of the thyroid cartilage. For the left carotid artery, use your right fingers or thumb. Never press both carotids at the same time. This may decrease blood flow to the brain and induce syncope.

Slowly increase pressure until you feel a maximal pulsation, then slowly decrease pressure until you best sense the arterial pressure and contour. Try to assess:

- The amplitude of the pulse. This correlates reasonably well with the pulse pressure.

- The contour of the pulse wave, namely the speed of the upstroke, the duration of its summit, and the speed of the downstroke. The normal upstroke is brisk. It is smooth, rapid, and follows S1 almost immediately. The summit is smooth, rounded, and roughly midsystolic. The downstroke is less abrupt than the upstroke.

- Any variations in amplitude, either from beat to beat or with respiration.

Thrills and Bruits. During palpation of the carotid artery, you may detect humming vibrations, or thrills, that feel like the throat of a purring cat. Routinely, but especially in the presence of a thrill, you should listen over both carotid arteries with the diaphragm of your stethoscope for a bruit, a murmur-like sound of vascular rather than cardiac origin.

You should also listen for bruits over the carotid arteries if the patient is middle-aged or elderly or if you suspect cerebrovascular disease. Ask the patient to hold breathing for a moment so that breath sounds do not obscure the vascular sound. Heart sounds alone do not constitute a bruit.

Further examination of arterial pulses is described in Chapter 14, The Peripheral Vascular System.

The Brachial Artery. The carotid arteries reflect aortic pulsations more accurately, but in patients with carotid obstruction, kinking, or thrills, they are unsuitable. If so, assess the pulse in the brachial artery, applying the techniques described above for determining amplitude and contour.

Use the index and middle fingers or thumb of your opposite hand. Cup

EXAMPLES OF ABNORMALITIES

Pressure on the carotid sinus may cause a reflex drop in pulse rate or blood pressure.

See Table 3-9, Abnormalities of the Arterial Pulse and Pressure Waves (p. __).

Small, thready, or weak pulse in cardiogenic shock; bounding pulse in aortic insufficiency (see p. ___).

Delayed carotid upstroke in aortic stenosis

Pulsus alternans, bigeminal pulse (beat-to-beat variation); paradoxical pulse (respiratory variation)

A carotid bruit with or without a thrill in a middle-aged or older person suggests but does not prove arterial narrowing. An aortic murmur may radiate to the carotid artery and sound like a bruit.
your hand under the patient’s elbow and feel for the pulse just medial to the biceps tendon. The patient’s arm should rest with the elbow extended, palm up. With your free hand, you may need to flex the elbow to a varying degree to get optimal muscular relaxation.

The Heart

For most of the cardiac examination, the patient should be supine with the upper body raised by elevating the head of the bed or table to about 30°. Two other positions are also needed: (1) turning to the left side, and (2) leaning forward. The examiner should stand at the patient’s right side.

The table below summarizes patient positions and a suggested sequence for the examination.

<table>
<thead>
<tr>
<th>Patient Position</th>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine, with the head elevated 30°</td>
<td>Inspect and palpate the precordium: the 2nd interspaces; the right ventricle; and the left ventricle, including the apical impulse (diameter, location, amplitude, duration).</td>
</tr>
<tr>
<td>Left lateral decubitus</td>
<td>Palpate the apical impulse if not previously detected. Listen at the apex with the bell of the stethoscope.</td>
</tr>
<tr>
<td>Supine, with the head elevated 30°</td>
<td>Listen at the tricuspid area with the bell. Listen at all the auscultatory areas with the diaphragm.</td>
</tr>
<tr>
<td>Sitting, leaning forward, after full exhalation</td>
<td>Listen along the left sternal border and at the apex.</td>
</tr>
</tbody>
</table>

During the cardiac examination, remember to correlate your findings with the patient’s jugular venous pressure and carotid pulse. It is also important to identify both the anatomic location of your findings and their timing in the cardiac cycle.

- Note the **anatomic location** of sounds in terms of interspaces and their distance from the midsternal, midclavicular, or axillary lines. The midsternal line offers the most reliable zero point for measurement, but some feel that the midclavicular line accommodates the different sizes and shapes of patients.

- Identify the **timing of impulses or sounds** in relation to the cardiac cycle. Timing of sounds is often possible through auscultation alone. In most people with normal or slow heart rates, it is easy to identify the paired heart sounds by listening through a stethoscope. *S*₁ is the first of these sounds, *S*₂ is the second, and the relatively long diastolic interval separates one pair from the next.

Accentuated Findings

- **Low-pitched extra sounds** (*S*₃, opening snap, diastolic rumble of mitral stenosis)
- **Soft decrescendo diastolic murmur** of aortic insufficiency
The relative intensity of these sounds may also be helpful. S_1 is usually louder than S_2 at the apex; more reliably, S_2 is usually louder than S_1 at the base.

Even experienced clinicians are sometimes uncertain about the timing of what they hear, especially when they encounter extra heart sounds and murmurs. “Inching” can then be helpful. Return to a place on the chest—most often the base—where it is easy to identify S_1 and S_2. Get their rhythm clearly in mind. Then inch your stethoscope down the chest in steps until you hear the new sound.

Auscultation alone, however, can be misleading. The intensities of S_1 and S_2, for example, may be abnormal. At rapid heart rates, moreover, diastole shortens, and at about a rate of 120 the durations of systole and diastole become indistinguishable. Use palpation of either the carotid pulse or the apical impulse to guide the timing of your observations. Both occur in early systole, right after the first heart sound.

INSPECTION AND PALPATION

Careful inspection of the anterior chest may reveal the location of the apical impulse or point of maximal impulse (PMI), or less commonly, the ventricular movements of a left-sided S_3 or S_4. Tangential light is best for making these observations.

Use palpation to confirm the characteristics of the apical impulse. Palpation is also valuable for detecting thrills and the ventricular movements of an S_3 or S_4. Be sure to assess the right ventricle by palpating the right ventricular area at the lower left sternal border and in the subxiphoid area, the pulmonary artery in the left 2nd interspace, and the aortic area in the right 2nd interspace. Review the diagram on the next page. Note that the “areas” designated for the left and right ventricle, the pulmonary artery, and the aorta pertain to the majority of patients whose hearts are situated in the left chest, with normal anatomy of the great vessels.

Begin with general palpation of the chest wall. First palpate for impulses using your fingerpads. Hold them flat or obliquely on the body surface, using light pressure for an S_3 or S_4, and firmer pressure for S_1 and S_2. Ventricular impulses may heave or lift your fingers. Then check for thrills by pressing the ball of your hand firmly on the chest. If subsequent auscultation reveals a loud murmur, go back and check for thrills over that area again.

For example, S_1 is decreased in first-degree heart block, and S_2 is decreased in aortic stenosis.

Thrills may accompany loud, harsh, or rumbling murmurs as in aortic stenosis, patent ductus arteriosus, ventricular septal defect, and, less commonly, mitral stenosis. They are palpated more easily in patient positions that accentuate the murmur.
The Apical Impulse or Point of Maximal Impulse (PMI)—Left Ventricular Area. The apical impulse represents the brief early pulsation of the left ventricle as it moves anteriorly during contraction and touches the chest wall. Note that in most examinations the apical impulse is the point of maximal impulse, or PMI; however, some pathologic conditions may produce a pulsation that is more prominent than the apex beat, such as an enlarged right ventricle, a dilated pulmonary artery, or an aneurysm of the aorta.

If you cannot identify the apical impulse with the patient supine, ask the patient to roll partly onto the left side—this is the left lateral decubitus position. Palpate again using the palmar surfaces of several fingers. If you cannot find the apical impulse, ask the patient to exhale fully and stop breathing for a few seconds. When examining a woman, it may be helpful to displace the left breast upward or laterally as necessary; alternatively, ask her to do this for you.

On rare occasions, a patient has dextrocardia—a heart situated on the right side. The apical impulse will then be found on the right. If you cannot find an apical impulse, percuss for the dullness of heart and liver and for the tympany of the stomach. In situs inversus, all three of these structures are on opposite sides from normal. A right-sided heart with a normally placed liver and stomach is usually associated with congenital heart disease.
Once you have found the apical impulse, make finer assessments with your fingertips, and then with one finger.

With experience, you will learn to feel the apical impulse in a high percentage of patients, but obesity, a very muscular chest wall, or an increased anteroposterior diameter of the chest may make it undetectable. Some apical impulses hide behind the rib cage, despite positioning.

Now assess the location, diameter, amplitude, and duration of the apical impulse. You may wish to have the patient breathe out and briefly stop breathing to check your findings.

Location. Try to assess location with the patient supine, since the left lateral decubitus position displaces the apical impulse to the left. Locate two points: the interspaces, usually the 5th or possibly the 4th, which give the vertical location; and the distance in centimeters from the midsternal line, which gives the horizontal location. (Note that even though the apical impulse normally falls roughly at the midclavicular line, measurements from this line are less reproducible since clinicians vary in their estimates of the midpoint of the clavicle.)

See Table 7-1, Variations and Abnormalities of the Ventricular Impulses (p. __).

The apical impulse may be displaced upward and to the left by pregnancy or a high left diaphragm.

Lateral displacement from cardiac enlargement in congestive heart failure, cardiomyopathy, ischemic heart disease. Displacement in deformities of the thorax and mediastinal shift.
■ **Diameter.** Assess the diameter of the apical impulse. In the supine patient, it usually measures less than 2.5 cm and occupies only one interspace. It may be larger in the left lateral decubitus position.

■ **Amplitude.** Estimate the amplitude of the impulse. It is usually small and feels brisk and tapping. Some young persons have an increased amplitude, or hyperkinetic impulse, especially when excited or after exercise; its duration, however, is normal.

In the left lateral decubitus position, a diameter greater than 3 cm indicates left ventricular enlargement.

Increased amplitude may also reflect hyperthyroidism, severe anemia, pressure overload of the left ventricle (e.g., aortic stenosis), or volume overload of the left ventricle (e.g., mitral regurgitation).

■ **Duration.** Duration is the most useful characteristic of the apical impulse for identifying hypertrophy of the left ventricle. To assess duration, listen to the heart sounds as you feel the apical impulse, or watch the movement of your stethoscope as you listen at the apex. Estimate the proportion of systole occupied by the apical impulse. Normally it lasts through the first two thirds of systole, and often less, but does not continue to the second heart sound.

■ **S₃ and S₄.** By inspection and palpation, you may detect ventricular movements that are synchronous with pathologic third and fourth heart sounds. For the left ventricular impulses, feel the apical beat gently with one finger. The patient should lie partly on the left side, breathe out, and briefly stop breathing. By inking an X on the apex you may be able to see these movements.

The Left Sternal Border in the 3rd, 4th, and 5th Interspaces—Right Ventricular Area. The patient should rest supine at 30°. Place the tips of your curved fingers in the 3rd, 4th, and 5th interspaces and try to feel the systolic impulse of the right ventricle. Again, asking the patient to breathe out and then briefly stop breathing improves your observation.

A sustained, high-amplitude impulse that is normally located suggests left ventricular hypertrophy from pressure overload (as in hypertension). If such an impulse is displaced laterally, consider volume overload.

A sustained low-amplitude (hypokinetic) impulse may result from dilated cardiomyopathy.

A brief middiastolic impulse indicates an S₃; an impulse just before the systolic apical beat itself indicates an S₄.
TECHNIQUES OF EXAMINATION

If an impulse is palpable, assess its location, amplitude, and duration. A brief systolic tap of low or slightly increased amplitude is sometimes felt in thin or shallow-chested persons, especially when stroke volume is increased, as by anxiety.

The diastolic movements of right-sided third and fourth heart sounds may be felt occasionally. Feel for them in the 4th and 5th left interspaces. Time them by auscultation or carotid palpation.

In patients with an increased anteroposterior (AP) diameter, palpation of the right ventricle in the epigastric or subxiphoid area is also useful. With your hand flattened, press your index finger just under the rib cage and up toward the left shoulder and try to feel right ventricular pulsations.

EXAMPLES OF ABNORMALITIES

A marked increase in amplitude with little or no change in duration occurs in chronic volume overload of the right ventricle, as from an atrial septal defect.

An impulse with increased amplitude and duration occurs with pressure overload of the right ventricle, as in pulmonic stenosis or pulmonary hypertension.

In obstructive pulmonary disease, hyperinflated lung may prevent palpation of an enlarged right ventricle in the left parasternal area. The impulse is felt easily, however, high in the epigastrium and heart sounds are also often heard best here.
Asking the patient to inhale and briefly stop breathing is helpful. The inspiratory position moves your hand well away from the pulsations of the abdominal aorta, which might otherwise be confusing. The diastolic movements of S_3 and S_4, if present, may also be felt here.

The Left 2nd Interspace—Pulmonic Area. This interspace overlies the pulmonary artery. As the patient holds expiration, look and feel for an impulse and feel for possible heart sounds. In thin or shallow-chested patients, the pulsation of a pulmonary artery may sometimes be felt here, especially after exercise or with excitement.

The Right 2nd Interspace—Aortic Area. This interspace overlies the aortic outflow tract. Search for pulsations and palpable heart sounds.

PERCUSSION

In most cases, palpation has replaced percussion in the estimation of cardiac size. When you cannot feel the apical impulse, however, percussion may suggest where to search for it. Occasionally, percussion may be your only tool. Under these circumstances, cardiac dullness often occupies a large area. Starting well to the left on the chest, percuss from resonance toward cardiac dullness in the 3rd, 4th, 5th, and possibly 6th interspaces.

AUSCULTATION

Overview. Auscultation of heart sounds and murmurs is a rewarding and important skill of physical examination that leads directly to several clinical diagnoses. In this section, you will learn the techniques for identifying S_1 and S_2, extra sounds in systole and diastole, and systolic and diastolic murmurs. Review the auscultatory areas on the next page with the following caveats: (1) some authorities discourage use of these names since murmurs of more than one origin may occur in a given area; and (2) these areas may not apply to patients with dextrocardia or anomalies of the great vessels. Also, if the heart is enlarged or displaced, your pattern of auscultation should be altered accordingly.

Listen to the heart with your stethoscope in the right 2nd interspace close to the sternum, along the left sternal border in each interspace from the 2nd through the 5th, and at the apex. Recall that the upper margins of the heart are sometimes termed the “base” of the heart. Some clinicians begin auscultation at the apex, others at the base. Either pattern is satisfactory. The room should be quiet. You should also listen in any area where you detect an abnormality and in areas adjacent to murmurs to determine where they are loudest and where they radiate.
Heart sounds and murmurs that originate in the four valves are illustrated in the diagram below. Pulmonic sounds are usually heard best in the 2nd and 3rd left interspaces, but may extend further.

Know your stethoscope! It is important to understand the uses of both the diaphragm and the bell.

- **The diaphragm.** The diaphragm is better for picking up the relatively high-pitched sounds of S_1 and S_2, the murmurs of aortic and mitral regurgitation, and pericardial friction rubs. *Listen throughout the precordium* with the diaphragm, pressing it firmly against the chest.

- **The bell.** The bell is more sensitive to the low-pitched sounds of S_3 and S_4 and the murmur of mitral stenosis. Apply the bell lightly, with just enough pressure to produce an air seal with its full rim. *Use the bell at the apex, then move medially along the lower sternal border.* Resting the heel of your hand on the chest like a fulcrum may help you to maintain light pressure.

Pressing the bell firmly on the chest makes it function more like the diaphragm by stretching the underlying skin. Low-pitched sounds such as S_3 and S_4 may disappear with this technique—an observation that may help to identify them. In contrast, high-pitched sounds such as a midsystolic click, an ejection sound, or an opening snap, will persist or get louder.

Listen to the entire precordium with the patient supine. For new patients and patients needing a complete cardiac examination, use two other important positions to listen for mitral stenosis and aortic regurgitation.

Ask the patient to roll partly onto the left side into the left lateral decubitus position, bringing the left ventricle close to the chest wall. Place the bell of your stethoscope lightly on the apical impulse.

This position accentuates or brings out a left-sided S_1 and S_4 and mitral murmurs, especially mitral stenosis. You may otherwise miss these important findings.
Ask the patient to sit up, lean forward, exhale completely, and stop breathing in expiration. Pressing the diaphragm of your stethoscope on the chest, listen along the left sternal border and at the apex, pausing periodically so the patient may breathe.

This position accentuates or brings out aortic murmurs. You may easily miss the soft diastolic murmur of aortic regurgitation unless you use this position.

Listening for Heart Sounds. Throughout your examination, take your time at each auscultatory area. Concentrate on each of the events in the cardiac cycle listed on the next page and sounds you may hear in systole and diastole.
Attributes of Heart Murmurs. If you detect a heart murmur, you must learn to identify and describe its **timing**, **shape**, **location of maximal intensity**, **radiation** or transmission from this location, **intensity**, **pitch**, and **quality**.

Timing. First decide if you are hearing a **systolic murmur**, falling between \(S_1 \) and \(S_2 \), or a **diastolic murmur**, falling between \(S_2 \) and \(S_1 \). Palpating the carotid pulse as you listen can help you with timing. Murmurs that coincide with the carotid upstroke are systolic.

Systolic murmurs are usually **midsystolic** or **pansystolic**. Late systolic murmurs may also be heard.

Diastolic murmurs usually indicate valvular heart disease. Systolic murmurs may indicate valvular disease, but often occur when the heart is entirely normal.

EXAMPLES OF ABNORMALITIES

See Table 7-2, Variations in the First Heart Sound (p. __).

See Table 7-3, Variations in the Second Heart Sound (p. __).

When either \(A_2 \) or \(P_2 \) is absent, as in disease of the respective valves, \(S_2 \) is persistently single.

Expiratory splitting suggests an abnormality (p. __).

Persistent splitting results from delayed closure of the pulmonic valve or early closure of the aortic valve.

A loud \(P_2 \) suggests pulmonary hypertension.

The systolic click of mitral valve prolapse is the most common of these sounds. See Table 7-4, Extra Heart Sounds in Systole (p. __).

See Table 7-5, Extra Heart Sounds in Diastole (p. __).

See Table 7-6, Midsystolic Murmurs (pp. __–__), Table 7-7, Pansystolic (Holosystolic) Murmurs (p. __), and Table 7-8, Diastolic Murmurs (p. __).
A midsystolic murmur begins after S_1 and stops before S_2. Brief gaps are audible between the murmur and the heart sounds. Listen carefully for the gap just before S_2. It is heard more easily and, if present, usually confirms the murmur as midsystolic, not pansystolic.

A pansystolic (holosystolic) murmur starts with S_1 and stops at S_2, without a gap between murmur and heart sounds.

A late systolic murmur usually starts in mid- or late systole and persists up to S_2.

Diastolic murmurs may be early diastolic, middiastolic, or late diastolic.

An early diastolic murmur starts right after S_2, without a discernible gap, and then usually fades into silence before the next S_1.

A middiastolic murmur starts a short time after S_2. It may fade away, as illustrated, or merge into a late diastolic murmur.

A late diastolic (presystolic) murmur starts late in diastole and typically continues up to S_1.

An occasional murmur, such as the murmur of a patent ductus arteriosus, starts in systole and continues without pause through S_2 into but not necessarily throughout diastole. It is then called a continuous murmur. Other cardiovascular sounds, such as pericardial friction rubs or venous hums, have both systolic and diastolic components. Observe and describe these sounds according to the characteristics used for systolic and diastolic murmurs.

Midsystolic murmurs most often are related to blood flow across the semilunar (aortic and pulmonic) valves. See Table 7-6, Midsystolic Murmurs (pp. __–__).

Pansystolic murmurs often occur with regurgitant (backward) flow across the atrioventricular valves. See Table 7-7, Pansystolic (Holosystolic) Murmurs (p. __).

This is the murmur of mitral valve prolapse and is often, but not always, preceded by a systolic click (see p. __).

Early diastolic murmurs typically accompany regurgitant flow across incompetent semilunar valves.

Middiastolic and presystolic murmurs reflect turbulent flow across the atrioventricular valves. See Table 7-8, Diastolic Murmurs (p. __).

The combination of systolic and diastolic murmurs, each with its own characteristics, may have similar timing. See Table 7-9, Cardiovascular Sounds With Both Systolic and Diastolic Components (p. __).
TECHNIQUES OF EXAMINATION

- **Shape.** The shape or configuration of a murmur is determined by its intensity over time.

 - A *crescendo murmur* grows louder.
 - A *decrescendo murmur* grows softer.
 - A *crescendo–descrescendo murmur* first rises in intensity, then falls.
 - A *plateau murmur* has the same intensity throughout.

- **Location of Maximal Intensity.** This is determined by the site where the murmur originates. Find the location by exploring the area where you hear the murmur. Describe where you hear it best in terms of the interspace and its relation to the sternum, the apex, or the midsternal, the midclavicular, or one of the axillary lines.

- **Radiation or Transmission from the Point of Maximal Intensity.** This reflects not only the site of origin but also the intensity of the murmur and the direction of blood flow. Explore the area around a murmur and determine where else you can hear it.

- **Intensity.** This is usually graded on a 6-point scale and expressed as a fraction. The numerator describes the intensity of the murmur wherever it is loudest, and the denominator indicates the scale you are using. Intensity is influenced by the thickness of the chest wall and the presence of intervening tissue.

Learn to grade murmurs using the 6-point scale below. Note that grades 4 through 6 require the added presence of a palpable thrill.

Gradations of Murmurs

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>Very faint, heard only after listener has “tuned in”; may not be heard in all positions</td>
</tr>
<tr>
<td>Grade 2</td>
<td>Quiet, but heard immediately after placing the stethoscope on the chest</td>
</tr>
<tr>
<td>Grade 3</td>
<td>Moderately loud</td>
</tr>
<tr>
<td>Grade 4</td>
<td>Loud, with palpable thrill</td>
</tr>
<tr>
<td>Grade 5</td>
<td>Very loud, with thrill. May be heard when the stethoscope is partly off the chest</td>
</tr>
<tr>
<td>Grade 6</td>
<td>Very loud, with thrill. May be heard with stethoscope entirely off the chest</td>
</tr>
</tbody>
</table>

EXAMPLES OF ABNORMALITIES

- The presystolic murmur of mitral stenosis in normal sinus rhythm
- The early diastolic murmur of aortic regurgitation
- The midsystolic murmur of aortic stenosis and innocent flow murmurs
- The pansystolic murmur of mitral regurgitation
- For example, a murmur best heard in the 2nd right interspace usually originates at or near the aortic valve.
- A loud murmur of aortic stenosis often radiates into the neck (in the direction of arterial flow).
- An identical degree of turbulence would cause a louder murmur in a thin person than in a very muscular or obese one. Emphysematous lungs may diminish the intensity of murmurs.
Other useful characteristics of murmurs—and heart sounds too—include variation with respiration, with the position of the patient, or with other special maneuvers.

A Note on Cardiovascular Assessment

A good cardiovascular examination requires more than observation. You need to think about the possible meanings of your individual observations, fit them together in a logical pattern, and correlate your cardiac findings with the patient’s blood pressure, arterial pulses, venous pulsations, jugular venous pressure, the remainder of your physical examination, and the patient’s history.

Evaluating the common systolic murmur illustrates this point. In examining an asymptomatic teenager, for example, you might hear a grade 2/6 mid-systolic murmur in the 2nd and 3rd left interspaces. Since this suggests a murmur of pulmonic origin, you should assess the size of the right ventricle by carefully palpating the left parasternal area. Because pulmonic stenosis and atrial septal defects can occasionally cause such murmurs, listen carefully to the splitting of the second heart sound and try to hear any ejection sounds. Listen to the murmur after the patient sits up. Look for evidence of anemia, hyperthyroidism, or pregnancy that could produce such a murmur by increasing the flow across the aortic or the pulmonic valve. If all your findings are normal, your patient probably has an innocent murmur—one with no pathologic significance.

In a 60-year-old person with angina, you might hear a harsh 3/6 mid-systolic crescendo-decrescendo murmur in the right 2nd interspace radiating to the neck. These findings suggest aortic stenosis, but could arise from aortic sclerosis (leaflets sclerotic but not stenotic), a dilated aorta, or increased flow across a normal valve. Check the apical impulse for left ventricular enlargement. Listen for aortic regurgitation as the patient leans forward and exhales.

Assess any delay in the carotid upstroke and the blood pressure for evidence of aortic stenosis. Put all this information together to make a tentative hypothesis about the origin of the murmur.

Special Techniques

Aids to Identify Systolic Murmurs. Elsewhere in this chapter you have learned how to improve your auscultation of heart sounds and murmurs by placing the patient in different positions. Two additional techniques will help you distinguish the murmurs of mitral valve prolapse and hypertrophic cardiomyopathy from aortic stenosis.

(1) Standing and Squatting. When a person stands, venous return to the heart decreases as does peripheral vascular resistance. Arterial blood pressure, stroke volume, and the volume of blood in the left ventricle all decline. On squatting, changes occur in the opposite direction. These changes
help (1) to identify a prolapsed mitral valve, and (2) to distinguish hypertrophic cardiomyopathy from aortic stenosis.

Secure the patient’s gown so that it will not interfere with your examination, and ready yourself for prompt auscultation. Instruct the patient to squat next to the examining table and hold on to it for balance. Listen to the heart with the patient in the squatting position and again in the standing position.

(2) **Valsalva Maneuver.** When a person strains down against a closed glottis, venous return to the right heart is decreased and after a few seconds left ventricular volume and arterial blood pressure both fall. Release of the effort has the opposite effects. These changes help to distinguish prolapse of the mitral valve and hypertrophic cardiomyopathy from aortic stenosis.

The patient should be lying down. Ask the patient to “bear down,” or place one hand on the midabdomen and instruct the patient to strain against it. By adjusting the pressure of your hand you can alter the patient’s effort to the desired level. Use your other hand to place your stethoscope on the patient’s chest.

Maneuvers to Identify Systolic Murmurs

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Cardiovascular Effect</th>
<th>Effect on Systolic Sounds and Murmurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing; Strain Phase of Valsalva</td>
<td>Decreased left ventricular volume from ↓ venous return to heart; Decreased vascular tone: ↓ arterial blood pressure; ↓ peripheral vascular resistance</td>
<td>Mitral Valve Prolapse: ↑ prolapse of mitral valve; Click moves earlier in systole and murmur lengthens; ↓ intensity of murmur; ↓ prolapse of mitral valve; Delay of click and murmur shortens; ↓ intensity of murmur</td>
</tr>
<tr>
<td>Squatting; Release of Valsalva</td>
<td>Increased left ventricular volume from ↑ venous return to heart; Increased vascular tone: ↑ arterial blood pressure; ↑ peripheral vascular resistance</td>
<td>Mitral Valve Prolapse: ↑ outflow obstruction</td>
</tr>
</tbody>
</table>

Pulsus Alternans.

If you suspect left-sided heart failure, feel the pulse specifically for alternating amplitudes. These are usually felt best in the radial or the femoral arteries. A blood-pressure cuff gives you a more sensitive method. After raising the cuff pressure, lower it slowly to the systolic level and then below it. While you do this, the patient should breathe quietly or stop breathing in the respiratory midposition. If dyspnea prevents this, help the patient to sit up and dangle both legs over the side of the bed.

Alternately loud and soft Korotkoff sounds or a sudden doubling of the apparent heart rate as the cuff pressure declines indicates a pulsus alternans (see p. ___).

The upright position may accentuate the alternation.
Paradoxical Pulse. If you have noted that the pulse varies in amplitude with respiration or if you suspect pericardial tamponade (because of increased jugular venous pressure, a rapid and diminished pulse, and dyspnea, for example), use a blood-pressure cuff to check for a paradoxical pulse. This is a greater than normal drop in systolic pressure during inspiration. As the patient breathes, quietly if possible, lower the cuff pressure slowly to the systolic level. Note the pressure level at which the first sounds can be heard. Then drop the pressure very slowly until sounds can be heard throughout the respiratory cycle. Again note the pressure level. The difference between these two levels is normally no greater than 3 or 4 mm Hg.

The level identified by first hearing Korotkoff sounds is the highest systolic pressure during the respiratory cycle. The level identified by hearing sounds throughout the cycle is the lowest systolic pressure. A difference between these levels of more than 10 mm Hg indicates a paradoxical pulse and suggests pericardial tamponade, possibly constrictive pericarditis, but most commonly obstructive airway disease (see p. __).
TABLE 7-1 ■ Variations and Abnormalities of the Ventricular Impulses

When a ventricle works under conditions of chronic pressure overload or increased afterload, its walls gradually thicken or hypertrophy. Volume overload (increased preload), in contrast, produces dilatation of the ventricle as well as thickening of its walls. A hyperkinetic impulse results from increased stroke volume and does not necessarily signify heart disease. An impulse may feel hyperkinetic when the chest wall is unusually thin.

<table>
<thead>
<tr>
<th></th>
<th>Left Ventricle</th>
<th>Right Ventricle</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Impulse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th or possibly 4th left interspace, medial to the midclavicular line</td>
<td>Normal</td>
<td>Displaced to the left and possibly downward</td>
</tr>
<tr>
<td>3rd, 4th, or 5th left interspaces</td>
<td>Indeterminate</td>
<td>Left sternal border, extending toward the left cardiac border, also subxiphoid</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little more than 2 cm in adults (1 cm in children); 3 cm or less in left-sided position</td>
<td>Normal, though increased amplitude may make it seem larger</td>
<td>Increased</td>
</tr>
<tr>
<td>Increased</td>
<td>Indeterminate</td>
<td>Not useful</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small, gentle</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Increased</td>
<td>Not palpable beyond infancy</td>
<td>Slightly increased</td>
</tr>
<tr>
<td>Increased</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Increased</td>
<td>Slightly increased</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usually less than 2/3 of systole; the impulse stops before S₂</td>
<td>Normal</td>
<td>Prolonged, may be sustained up to S₂</td>
</tr>
<tr>
<td>Normal to slightly prolonged</td>
<td>Indeterminate</td>
<td>Normal</td>
</tr>
<tr>
<td>Normal to slightly prolonged</td>
<td>Normal to slightly prolonged</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples of Causes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety, hyperthyroidism, severe anemia</td>
<td>Aortic stenosis, hypertension</td>
<td>Aortic or mitral regurgitation</td>
</tr>
<tr>
<td>Anxiety, hyperthyroidism, severe anemia</td>
<td>Pulmonic stenosis, pulmonary hypertension</td>
<td>Atrial septal defect</td>
</tr>
</tbody>
</table>
TABLE 7-2 Variations in the First Heart Sound

<table>
<thead>
<tr>
<th>Normal Variations</th>
<th>(S_1) is softer than (S_2) at the base (right and left 2nd interspaces).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accentuated (S_1)</td>
<td>(S_1) is often but not always louder than (S_2) at the apex.</td>
</tr>
<tr>
<td>Diminished (S_1)</td>
<td>(S_1) is accentuated in (1) tachycardia, rhythms with a short PR interval, and high cardiac output states (e.g., exercise, anemia, hyperthyroidism), and (2) mitral stenosis. In these conditions, the mitral valve is still open wide at the onset of ventricular systole, and then closes quickly.</td>
</tr>
<tr>
<td>Varying (S_1)</td>
<td>(S_1) is diminished in first-degree heart block (delayed conduction from atria to ventricles). Here the mitral valve has had time after atrial contraction to float back into an almost closed position before ventricular contraction shuts it. It closes less loudly. (S_1) is also diminished (1) when the mitral valve is calcified and relatively immobile, as in mitral regurgitation, and (2) when left ventricular contractility is markedly reduced, as in congestive heart failure or coronary heart disease.</td>
</tr>
<tr>
<td>Split (S_1)</td>
<td>(S_1) varies in intensity (1) in complete heart block, when atria and ventricles are beating independently of each other, and (2) in any totally irregular rhythm (e.g., atrial fibrillation). In these situations, the mitral valve is in varying positions before being shut by ventricular contraction. Its closure sound, therefore, varies in loudness.</td>
</tr>
</tbody>
</table>

\(S_1 \) may be split normally along the lower left sternal border where the tricuspid component, often too faint to be heard, becomes audible. This split may sometimes be heard at the apex, but consider also an \(S_4 \), an aortic ejection sound, and an early systolic click. Abnormal splitting of both heart sounds may be heard in right bundle branch block and in premature ventricular contractions.
<table>
<thead>
<tr>
<th>TABLE 7-3</th>
<th>Variations in the Second Heart Sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expiration</td>
<td>Inspiration</td>
</tr>
<tr>
<td>Physiologic</td>
<td></td>
</tr>
<tr>
<td>Splitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathologic</td>
<td></td>
</tr>
<tr>
<td>Splitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physiologic splitting of the second heart sound can usually be detected in the 2nd or 3rd left interspace. The pulmonic component of S_2 is usually too faint to be heard at the apex or aortic area, where S_2 is single and derived from aortic valve closure alone.

Normal splitting is accentuated by inspiration and usually disappears on expiration. In some patients, however, especially younger ones, S_2 may not become completely single on expiration. It may do so when the patient sits up.

Wide splitting of S_2 refers to an increase in the usual splitting that persists throughout the respiratory cycle. Wide splitting can be caused by delayed closure of the pulmonic valve (e.g., by pulmonic stenosis or right bundle branch block). As illustrated here, right bundle branch block also causes splitting of S_1 into its mitral and tricuspid components. Wide splitting can also be caused by early closure of the aortic valve, as in mitral regurgitation.

Fixed splitting refers to wide splitting that does not vary with respiration. It occurs in atrial septal defect and right ventricular failure.

Paradoxical or reversed splitting refers to splitting that appears on expiration and disappears on inspiration. Closure of the aortic valve is abnormally delayed so that A_2 follows P_2 in expiration. Normal inspiratory delay of P_2 makes the split disappear. The most common cause of paradoxical splitting is left bundle branch block.

Increased Intensity of A_2 in the Right Second Interspace
(where only A_2 can usually be heard) occurs in systemic hypertension because of the increased pressure. It also occurs when the aortic root is dilated, probably because the aortic valve is then closer to the chest wall.

A Decreased or Absent A_2 in the Right Second Interspace
is noted in calcific aortic stenosis because of immobility of the valve. If A_2 is inaudible, no splitting is heard.

Increased Intensity of P_2. When P_2 is equal to or louder than A_3, pulmonary hypertension may be suspected. Other causes include a dilated pulmonary artery and an atrial septal defect. Splitting of the second heart sound that is heard widely, even at the apex and the right base, indicates an accentuated P_2.

A Decreased or Absent P_2 is most commonly due to the increased anteroposterior diameter of the chest associated with aging. It can also result from pulmonic stenosis. If P_2 is inaudible, no splitting is heard.
TABLE 7-4 Extra Heart Sounds in Systole

Extra heart sounds in systole are of two kinds: (1) early ejection sounds, and (2) clicks, most commonly heard in mid- and late systole.

Early Systolic Ejection Sounds

- **Early systolic ejection sounds** occur shortly after the first heart sound, coincident with the opening of the aortic and pulmonic valves. They are relatively high in pitch, have a sharp, clicking quality, and are heard better with the diaphragm of the stethoscope. An ejection sound indicates cardiovascular disease.

- An **aortic ejection sound** is heard at both base and apex and may be louder at the apex. It does not usually vary with respiration. An aortic ejection sound may accompany a dilated aorta or aortic valve disease, such as congenital stenosis or a bicuspid valve.

- An **pulmonic ejection sound** is heard best in the 2nd and 3rd left interspaces. When the first heart sound, usually relatively soft in this area, appears to be loud, you may instead be hearing a pulmonic ejection sound. Its intensity often decreases with inspiration. Causes include dilatation of the pulmonary artery, pulmonary hypertension, and pulmonic stenosis.

Systolic Clicks

- **Systolic clicks** are usually due to **mitral valve prolapse**—an abnormal systolic ballooning of part of the mitral valve into the left atrium. The clicks are usually mid- or late systolic. Prolapse of the mitral valve is a common cardiac condition, affecting about 5% of the general population. It is now felt to have equal prevalence in men and women. The click is usually single, but more than one may be heard. A click is heard best at or medial to the apex but may also be heard at the lower left sternal border. It is high-pitched and heard better with the diaphragm. The click is often followed by a late systolic murmur, which usually represents mitral regurgitation—a flow of blood from left ventricle to left atrium. The murmur usually crescendos up to S₂. Systolic clicks may also be of extracardial or mediastinal origin.

- Auscultatory findings are notably variable. Most patients have only a click, some have only a murmur, and some have both. Findings vary from time to time and often change with body position. Several positions are recommended to identify the syndrome: supine, seated, squatting, and standing. Squatting delays the click and murmur; standing moves them closer to S₁.
Extra Heart Sounds in Diastole

| Opening Snap |
|---------------|---------|
| **S₃** | ![Diagram](#) |
| **S₄** | ![Diagram](#) |

Opening Snap

The opening snap is a very early diastolic sound usually produced by the opening of a stenotic mitral valve. It is heard best just medial to the apex and along the lower left sternal border. When it is loud, an opening snap radiates to the apex and to the pulmonic area, where it may be mistaken for the pulmonic component of a split S₂. Its high pitch and snapping quality help to distinguish it from an S₂. It is heard better with the diaphragm.

S₃

A physiologic third heart sound is heard frequently in children. It may persist in young adults to the age of 35 or 40. It is common during the last trimester of pregnancy. Occurring early in diastole during rapid ventricular filling, it is later than an opening snap, dull and low in pitch, and heard best at the apex in the left lateral decubitus position. The bell of the stethoscope should be used with very light pressure.

A pathologic S₃ or ventricular gallop sounds just like a physiologic S₃. An S₃ in a person over age 40 (possibly a little older in women) is almost certainly pathologic. Causes include decreased myocardial contractility, myocardial failure, and volume overloading of a ventricle, as in mitral or tricuspid regurgitation. A left-sided S₃ is heard typically at the apex in the left lateral position. A right-sided S₃ is usually heard along the lower left sternal border or below the xiphoid with the patient supine. It is louder on inspiration. The term gallop comes from the cadence of three heart sounds, especially at rapid heart rates, and sounds like “Kentucky.”

S₄

An S₄ (atrial sound or atrial gallop) occurs just before S₁. It is dull, low in pitch, and heard better with the bell. An S₄ is heard occasionally in an apparently normal person, especially in trained athletes and older age groups. More commonly, it is due to increased resistance to ventricular filling following atrial contraction. This increased resistance is related to decreased compliance (increased stiffness) of the ventricular myocardium. Causes of a left-sided S₄ include hypertensive heart disease, coronary artery disease, aortic stenosis, and cardiomyopathy. A left-sided S₄ is heard best at the apex in the left lateral position; it may sound like “Tennessee.” The less common right-sided S₄ is heard along the lower left sternal border or below the xiphoid. It often gets louder with inspiration. Causes of a right-sided S₄ include pulmonary hypertension and pulmonic stenosis.

An S₄ may also be associated with delayed conduction between atria and ventricles. This delay separates the normally faint atrial sound from the louder S₄ and makes it audible. An S₄ is never heard in the absence of atrial contraction, as occurs with atrial fibrillation.

Occasionally, a patient has both an S₃ and an S₄, producing a quadruple rhythm of four heart sounds. At rapid heart rates the S₃ and S₄ may merge into one loud extra heart sound, called a summation gallop.
TABLE 7-6 ■ Midsystolic Murmurs

Midsystolic ejection murmurs are the most common kind of heart murmur. They may be (1) *innocent*—without any detectable physiologic or structural abnormality; (2) *physiologic*—from physiologic changes in body metabolism; or (3) *pathologic*—arising from a structural abnormality in the heart or great vessels. Midsystolic murmurs tend to peak near midsystole and usually stop before S2. The crescendo–decrescendo or “diamond” shape is not always audible, but the gap between the murmur and S2 helps to distinguish midsystolic from pansystolic murmurs.

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Murmur</th>
<th>Associated Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innocent Murmurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location. 2nd to 4th left interspaces between the left sternal border and the apex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intensity. Grade 1 to 2, possibly 3</td>
<td>None: normal splitting, no ejection sounds, no diastolic murmurs, and no palpable evidence of ventricular enlargement. Occasionally, a patient has both an innocent murmur and another kind of murmur.</td>
</tr>
<tr>
<td></td>
<td>Pitch. Medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality. Variable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aids. Usually decreases or disappears on sitting</td>
<td></td>
</tr>
<tr>
<td>Physiologic Murmurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location. 2nd and 3rd left interspaces</td>
<td>Similar to innocent murmurs</td>
</tr>
<tr>
<td></td>
<td>Intensity. Soft to loud; if loud, associated with a thrill</td>
<td>Possible signs of a likely cause</td>
</tr>
<tr>
<td></td>
<td>Pitch. Medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality. Often harsh</td>
<td></td>
</tr>
<tr>
<td>Pathologic Murmurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location. 2nd and 3rd left interspaces</td>
<td>In severe stenosis, S1 is widely split and P2 is diminished. When P2 is inaudible, no splitting is heard. An early pulmonic ejection sound is common. A right-sided S4 may be present. The right ventricular impulse is often increased in amplitude and may be prolonged.</td>
</tr>
<tr>
<td></td>
<td>Intensity. Soft to loud; if loud, associated with a thrill</td>
<td></td>
</tr>
<tr>
<td>Pulmonic Stenosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Location. If loud, toward the left shoulder and neck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intensity. Soft to loud; if loud, associated with a thrill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pitch. Medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality. Often harsh</td>
<td></td>
</tr>
</tbody>
</table>

(table continues on next page)
TABLE 7-6 Midsystolic Murmurs (Continued)

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Murmur</th>
<th>Associated Findings</th>
</tr>
</thead>
</table>
| **Aortic Stenosis** | Location. Right 2nd interspace
Radiation. Often to the neck and down the left sternal border, even to the apex
Intensity. Sometimes soft but often loud, with a thrill
Pitch. Medium; at the apex, it may be higher
Quality. Often harsh; at the apex it may be more musical
Aids. Heavily best with the patient sitting and leaning forward | A$_2$ decreases as the stenosis worsens. A$_2$ may be delayed, merging with P$_2$ to form a single expiratory sound or causing paradoxical splitting. An S$_4$, reflecting the decreased compliance of the hypertrophied left ventricle, may be present at the apex. An aortic ejection sound, if present, suggests a congenital cause. A sustained apical impulse often reveals left ventricular hypertrophy. The carotid artery impulse may rise slowly and feel small in amplitude. |
| **Hypertrophic Cardiomyopathy** | Location. 3rd and 4th left interspaces
Radiation. Down the left sternal border to the apex, possibly to the base, but not to the neck
Intensity. Variable
Pitch. Medium
Quality. Harsh
Aids. Decreases with squatting, increases with straining down | An S$_1$ may be present.
An S$_3$ is often present at the apex (unlike mitral regurgitation).
The apical impulse may be sustained and have two palpable components.
The carotid pulse rises quickly (unlike the pulse in aortic stenosis). |

Significant stenosis of the aortic valve impairs blood flow across the valve, causing turbulence, and increases the afterload on the left ventricle. Causes are congenital, rheumatic, and degenerative, and findings may differ with each cause.

Other conditions may mimic the murmur of aortic stenosis without obstructing flow:
- Aortic sclerosis, a stiffening of aortic valve leaflets associated with aging
- A bicuspid aortic valve, a congenital condition, which may not be recognized until adulthood
- A dilated aorta, as from arteriosclerosis, syphilis, or Marfan’s syndrome
- A pathologically increased flow across the aortic valve during systole, as in aortic regurgitation

Massive hypertrophy of ventricular muscle is associated with unusually rapid ejection of blood from the left ventricle during systole. Obstruction to flow may coexist. Accompanying distortion of the mitral valve may cause mitral regurgitation.
TABLE 7-7 Pansystolic (Holosystolic) Murmurs

Pansystolic (holosystolic) murmurs are pathologic. They are heard when blood flows from a chamber of high pressure to one of lower pressure through a valve or other structure that should be closed. The murmur begins immediately with S_1 and continues up to S_2.

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Murmur</th>
<th>Associated Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral Regurgitation</td>
<td>When the mitral valve fails to close fully in systole, blood regurgitates from left ventricle to left atrium, causing a murmur. This leakage creates a volume overload on the left ventricle, with subsequent dilatation and hypertrophy. Several structural abnormalities cause this condition, and findings may vary accordingly.</td>
<td>S_1 is often decreased. An apical S_3 reflects volume overload on the left ventricle. The apical impulse is increased in amplitude and may be prolonged.</td>
</tr>
<tr>
<td>Tricuspid Regurgitation</td>
<td>When the tricuspid valve fails to close fully in systole, blood regurgitates from right ventricle to right atrium, producing a murmur. The most common cause is right ventricular failure and dilatation, with resulting enlargement of the tricuspid orifice. Either pulmonary hypertension or left ventricular failure is the usual initiating cause.</td>
<td>The right ventricular impulse is increased in amplitude and may be prolonged. An S_1 may be audible along the lower left sternal border. The jugular venous pressure is often elevated, and large v waves may be seen in the jugular veins.</td>
</tr>
<tr>
<td>Ventricular Septal Defect</td>
<td>A ventricular septal defect is a congenital abnormality in which blood flows from the relatively high-pressure left ventricle into the low-pressure right ventricle through a hole. The defect may be accompanied by other abnormalities, but an uncomplicated lesion is described here.</td>
<td>A_2 may be obscured by the loud murmur. Findings vary with the severity of the defect and with associated lesions.</td>
</tr>
</tbody>
</table>
Diastolic murmurs almost always indicate heart disease. There are two basic types. *Early decrescendo diastolic murmurs* signify regurgitant flow through an incompetent semilunar valve, more commonly the aortic. *Rumbling diastolic murmurs in mid- or late diastole* suggest stenosis of an atrioventricular valve, more often the mitral.

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Murmur</th>
<th>Associated Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic Regurgitation</td>
<td>Location. 2nd to 4th left interspaces</td>
<td>An ejection sound may be present. An S₃ or S₄, if present, suggests severe regurgitation.</td>
</tr>
<tr>
<td></td>
<td>Radiation. If loud, to the apex, perhaps to the right sternal border</td>
<td>Progressive changes in the apical impulse include increased amplitude, displacement laterally and downward, widened diameter, and increased duration.</td>
</tr>
<tr>
<td></td>
<td>Intensity. Grade 1 to 3</td>
<td>The pulse pressure increases, and arterial pulses are often large and bounding. A mid systolic flow murmur or an Austin Flint murmur suggests large regurgitant flow.</td>
</tr>
<tr>
<td></td>
<td>Pitch. High. Use the diaphragm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality. Blowing; may be mistaken for breath sounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aids. The murmur is heard best with the patient sitting, leaning forward, with breath held in exhalation.</td>
<td></td>
</tr>
</tbody>
</table>

When the leaflets of the mitral valve thicken, stiffen, and become distorted from the effects of rheumatic fever, the valve fails to open sufficiently in diastole. The resulting murmur has two components: (1) middiastolic (during rapid ventricular filling), and (2) presystolic (during atrial contraction). The latter disappears if atrial fibrillation develops, leaving only a middiastolic rumble.

Mitral Stenosis	**Location.** Usually limited to the apex	S₁ is accentuated and may be palpable at the apex. An opening snap (OS) often follows S₂ and initiates the murmur.
	Radiation. Little or none	If pulmonary hypertension develops, P₃ is accentuated and the right ventricular impulse becomes palpable.
	Intensity. Grade 1 to 4	Mitral regurgitation and aortic valve disease may be associated with mitral stenosis.
	Pitch. Low. *Use the bell.*	
	Aids. Placing the bell exactly on the apical impulse, turning the patient into a left lateral position, and mild exercise all help to make the murmur audible. It is heard better in exhalation.	
Some cardiovascular sounds are not confined to one portion of the cardiac cycle. Three examples are: (1) a *pericardial friction rub*, produced by inflammation of the pericardial sac; (2) *patent ductus arteriosus*, a congenital abnormality in which an open channel persists between aorta and pulmonary artery; and (3) a *venous hum*, a benign sound produced by turbulence of blood in the jugular veins (common in children). Their characteristics are contrasted below. *Continuous murmurs* begin in systole and continue through the second sound into all or part of diastole. Therefore the murmur of patent ductus arteriosus may be classified as continuous.

Table 7-9: Cardiovascular Sounds With Both Systolic and Diastolic Components

<table>
<thead>
<tr>
<th>Type</th>
<th>Pericardial Friction Rub</th>
<th>Patent Ductus Arteriosus</th>
<th>Venous Hum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing</td>
<td>May have three short components, each associated with cardiac movement: (1) atrial systole, (2) ventricular systole, and (3) ventricular diastole. Usually the first two components are present; all three make diagnosis easy; only one (usually the systolic) invites confusion with a murmur.</td>
<td>Continuous murmur in both systole and diastole, often with a silent interval late in diastole. Is loudest in late systole, obscures S₂, and fades in diastole.</td>
<td>Continuous murmur without a silent interval. Loudest in diastole.</td>
</tr>
<tr>
<td>Location</td>
<td>Variable, but usually heard best in the 3rd interspace to the left of the sternum</td>
<td>Left 2nd interspace</td>
<td>Above the medial third of the clavicles, especially on the right</td>
</tr>
<tr>
<td>Radiation</td>
<td>Little</td>
<td>Toward the left clavicle</td>
<td>1st and 2nd interspaces</td>
</tr>
<tr>
<td>Intensity</td>
<td>Variable. May increase when the patient leans forward, exhales, and holds breath (in contrast to pleural rub)</td>
<td>Usually loud, sometimes associated with a thrill</td>
<td>Soft to moderate. Can be obliterated by pressure on the jugular veins</td>
</tr>
<tr>
<td>Quality</td>
<td>Scratchy, scraping</td>
<td>Harsh, machinerylike</td>
<td>Humming, roaring</td>
</tr>
<tr>
<td>Pitch</td>
<td>High (heard better with a diaphragm)</td>
<td>Medium</td>
<td>Low (heard better with a bell)</td>
</tr>
</tbody>
</table>